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The Hong Kong University of Science and Technology

ABSTRACT

Deep learning can learn representations of data for different kinds of tasks by using

computational models with multiple processing layers. Remarkable progress has been

made in detection and classification tasks in recent years. However, there is still no clear

understanding of the inner working mechanisms. Usually, to get a better deep learning

model, people have to undergo a substantial amount of trial-and-error procedures, which is

very inconvenient and time-consuming. Consequently, there has been a dramatical interest

in using visualization to help people better understand and train deep learning models

intuitively. Existing work mainly focuses on three aspects, i.e., feature visualization,

relationship visualization and process visualization, which show the clear advantages in

helping understand the reasoning behind deep learning models.

In this survey, we first introduce the background and characteristics of deep learning

and then give a comprehensive review of how visualization techniques are used to help

understand and train deep learning models. Finally, we conclude the survey with a

discussion of future research directions.
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CHAPTER 1

INTRODUCTION

In this section, we first briefly introduce the background of deep learning, and then discuss

the motivation behind using visualization to help understand deep learning. After that,

an overview of this survey is given.

1.1 Background and Motivation

Deep learning, as a subfield of machine learning, allows computational models with mul-

tiple processing layers to extract features from raw data and discover the hierarchical

representations needed for different kinds of tasks (LeCun et al., 2015). In recent years,

it has achieved great progress in many Artificial Intelligence (AI) tasks, such as image

recognition (He et al., 2015) (Krizhevsky et al., 2012), speech recognition (Mohamed et al.,

2012) (Seide et al., 2011), and natural language processing (Mikolov et al., 2011) (Bordes

et al., 2012), attracting a lot of attention.

Actually, deep learning has been studied for many years. However, few researchers paid

much attention to it in the past because other machine learning models, such as SVMs,

can outperform it. Also it is difficult to train a deep neural network well, and a deep

model tend to yield worse results than a shallow model due to limited computation abil-

ity and the optimization challenges (Deng & Yu, 2014). It was not until 2006 Hinto et al.

proposed the unsupervised pretraining technique using greedy layer-wise procedures that

made training better deep neural networks possible (Hinton et al., 2006) (Bengio et al.,

2007) (MarcAurelio Ranzato et al., 2007). Then the success of AlexNet (Krizhevsky et al.,

2012) in the ImageNet challenge attracted great attention from both academia and indus-

try. After that people began to realize the powerful capacity of deep learning. Generally

speaking, three main factors contribute to the vigorous development of deep learning.

The first is the powerful computing capability. In particular, GPU implementations make

it possible to train a larger deep learning model in a relatively short time (Raina et al.,

2009) (Ciresan et al., 2011). The second is the availability of large label data sets (Deng

et al., 2009) (Lin et al., 2014). The last factor is the considerable advances in the avail-

ability of algorithms and techniques, such as the backpropagation algorithm (Rumelhart

et al., 1988), dropout (Hinton et al., 2012) and rectified linear units (Glorot et al., 2011).
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Although deep learning has achieved remarkable progress, there is still no clear un-

derstanding of the inner working mechanisms of deep learning models. The obstacle is

mainly due to their complex network structures, millions of parameters and non-linear

mathematical function components. Compared with many other machine learning mod-

els, such as SVMs and decision trees, deep learning works like a black box. Consequently,

people do not know why it works, how to improve it and when it fails. Therefore, in

order to get a better model, people have to work through a substantial amount of trial-

and-error procedures, which is very inconvenient and time-consuming. Also, when deep

learning models are applied to real scenarios, such as healthcare and insurance, people

become concerned about their performance in the decision-making process. It is not easy

for people to trust a black box model.

Recently, to better understand and train a deep learning model, researchers have pro-

posed visualization techniques, in the hope of shedding light into the black box model and

gaining valuable insight. For both newcomers and experts who want to learn more about

deep learning, visualization can not only help them understand deep learning models in-

tuitively, but also help them to tune a better model efficiently. For customers who adopt

deep learning models to make decisions, visualization techniques could involve them in

and thus make their decisions more interpretable.

This survey attempts to summarize existing work for visualization techniques used on

deep learning. It examines how visualization can better help us understand and tune deep

learning models, which can be further explored in the future work.

1.2 Overview

The remainder of this paper is organized as follows. In Chapter 2, we discuss the tax-

onomy in detail. In Chapter 3, a brief introduction to deep neural networks (CNNs and

RNNs) is given. In Chapter 4, we describe some methods used for visualizing the features

learned by deep learning models. In Chapter 5, we introduce visualization techniques

used for visualizing the relationships in deep learning models. In Chapter 6, we introduce

visualization techniques used for visualizing the process of deep learning models. Finally,

in Chapter 7, we give a summary of this survey and point out some potential research

directions for the future work.
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CHAPTER 2

TAXONOMY

There can be many different taxonomies for visualization of deep learning. Consider-

ing what kinds of visualization techniques are used, potential classes could be grid-based

techniques, network-based techniques and so on. While considering the targets that the

visualization is used on, other potential taxonomies could be neuron visualization, layer

visualization, edge (connection) visualization and so on. In this survey, we propose a tax-

onomy based on the challenges that deep learning faces and the purposes that visualization

techniques serve.

In the deep learning field, to better understand a deep neural network, researchers are

usually concerned about how the model works and how to improve it. Therefore, some

of existing work focuses on visualizing which features are extracted by neurons in the

network and how they relate to each other. This helps to understand what the model has

learned and what the inner working mechanism is. Other visualization work concentrates

on visualizing the whole training process and training information, which helps to design

and train a better model. Therefore, based on the purposes the visualization used for,

we categorize existing work into three classes, namely feature visualization, relationship

visualization and process visualization, which are shown in Figure 2.1.

Figure 2.1: The Taxonomy

Feature Visualization: Feature visualization methods are used to visualize the fea-

tures learned by the neurons of interest. These methods can be further categorized into

four classes, namely representation depiction methods, input modification methods, con-

tribution computation methods, and input reconstruction methods.
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Relationship Visualization: In relationship visualization, we concentrate on the

relationships between the learned representations and the relationships between neurons,

where projection and clustering techniques are leveraged by visualization techniques such

as scatter-plot and DAG-based visualization, respectively.

Process Visualization: We mainly focus on two aspects in process visualization:

neural network structure visualization and training information visualization. Process

visualization captures the whole working flow of a deep learning model.

There are various machine learning techniques and architectures in the deep learning

field, which can be broadly categorized into three major classes, namely deep networks for

unsupervised or generative learning, deep networks for supervised learning, and hybrid

deep networks (Deng, 2012). However, this three-way categorization is too general and

does not consider special structures of different neural networks, which is not suitable for

our survey. Basically, to apply visualization techniques, we need to consider the structure

of the networks carefully, since different structures could make a great difference. In

general, neural networks can be categorized by their architectures, such as Deep Neural

Networks (DNNs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks

(RNNs) and Deep Belief Networks (DBNs). Among them, CNNs and RNNs are the

most widely used and have achieved numerous state-of-the-art results. To the best of

our knowledge, many existing work about visualization is being applied to these two

architectures owing to their prevalence and practicality. Therefore, in this survey, our

examples are mostly related to these two architectures, especially for CNNs.

Finally, we give a table summarizing the related papers in this survey (Table 2.1).

Table 2.1: Visualization on Deep Learning

Detail Categories Related Paper

Feature Visualization

Representation Depiction Methods
(Karpathy, 2014a), (Yosinski et al., 2015),
(Karpathy et al., 2015), (Strobelt et al., 2016), etc.

Input Modification Methods
(Zeiler & Fergus, 2014), (Zhou et al., 2014),
(Girshick et al., 2014), etc.

Contribution Computation Methods

(Zeiler & Fergus, 2014), (Simonyan et al., 2013),
(Springenberg et al., 2014), (Bach et al., 2015),
(Zhou et al., 2015), (Bahdanau et al., 2014),
(Socher et al., 2013), (Hermann et al., 2015),
(Goyal et al., 2016), etc.

Input Reconstruction Methods

(Long et al., 2014), (Erhan et al., 2009),
(Simonyan et al., 2013), (Alexander et al., 2015),
(Mahendran & Vedaldi, 2015), (Yosinski et al., 2015),
(Mahendran & Vedaldi, 2016), (Dosovitskiy & Brox, 2015), etc.

Relationship Visualization
Relationships Between Representations

(Maaten & Hinton, 2008), (Cho et al., 2014),
(Karpathy, 2014b), (Rauber et al., 2016), etc.

Relationships Between Neurons (Liu et al., 2016), (Rauber et al., 2016), etc.

Process Visualization
Neural Network Structure (Model)

(Karpathy, 2014a), (Yosinski et al., 2015), (Smilkov et al., 2015),
(Harley, 2015), (Chung et al., 2016), (Liu et al., 2016),
(Bruckner, 2014), (Google, 2015), etc.

Training Information (Data)
(Google, 2015), (Bruckner, 2014),
(Smilkov et al., 2015), (Skymind, 2013),
(Chung et al., 2016), etc.
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CHAPTER 3

DEEP LEARNING MODELS

In this chapter, we briefly introduce some basic knowledge about deep learning models,

focusing on convolutional neural networks and recurrent neural networks, which are useful

for subsequent chapters.

3.1 Concepts and Foundations

Deep learning models usually refer to neural networks with multiple hidden layers of

neurons between the input and output layers (Bengio, 2009). A deep neural network

(DNN) is a typical deep learning model. As shown in Figure 3.1, the leftmost layer is

called the input layer; the rightmost layer is called the output layer; the middle layer

is called the hidden layer. We call a node in the network a neuron or unit, just like a

biological neuron. It performs a scalar product with its input and weights, added by the

bias and then the result is applied with an activation function (Figure 3.2). The final

value of the neuron is called as an activation and a vector of activations in a hidden layer

is a representation of an original input.

Figure 3.1: A typical architecture of DNN.1

1http://neuralnetworksanddeeplearning.com/chap6.html
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Figure 3.2: A sketch of a biological neuron (left) and a mathematical model (right).2

Here we make it more formal in mathematics based on the notation from Nielsen’s

book (Nielsen, 2015). wl
jk is used to stand for the weight for connection from the k-th

neuron in the (l − 1)-th layer to the j-th neuron in the l-th layer. Similarly, blj is used

to represent the bias of the j-th neuron in the l-th layer. While zlj is used for the linear

weight computation of a former layer and alj is used for the activation of the j-th neuron in

the l-th layer. In addition, σ is used for an activation function, which could be a sigmoid

function, a tanh function, a ReLU (rectifier linear unit) function and so on. While in the

last layer, usually a softmax function is applied. The computation equations are shown

as follows:


zlj =

∑
k

wl
jka

l−1
k + blj

alj = σ(zlj)

(3.1)

They can be written in more elegant and compact vectorized form:{
zl = wlal−1 + bl

al = σ(zl); l = 2, 3, ...L
(3.2)

where a1 indicates the input and aL indicates the output.

We can define quadratic cost function for a single training example x:

C =
1

2
‖y − aL‖ =

1

2

∑
j

(yj − aLj )2 (3.3)

where aL = aL(x) is the actual output from the network and y = y(x) is the cor-

responding desired output. Meanwhile, the cost function could actually be defined into

other forms, such as the cross-entropy cost function.

2http://cs231n.github.io/neural-networks-1/
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It is easy to get four fundamental equations behind the backpropagation (Nielsen,

2015): 

δL = ∇aC � σ′(zL)

δl = ((wl+1)T δl+1)� σ′(zl)

∂C

∂blj
= δlj

∂C

∂wl
jk

= al−1k δlj

(3.4)

Where δ indicates the error and � indicates the Hadamard product.

To train the model, usually we use the backpropagation algorithm and the stochastic

gradient descent. Here we show the procedure for a given mini-batch of m training

examples (Nielsen, 2015):

1. Input a set of training examples;

2. For each training example x: Set the corresponding input activation ax,1, and per-

form the following steps:

• Feedforward: Compute zx,l = wlax,l−1 + bl and ax,l = σ(zx,l) for each l =

2, 3, ..., L.

• Output error δx,L: Compute the vector δx,L = ∇aCx � δ′(zx,L).

• Backpropagation: Compute δx,l = ((wl+1)T δx,l+1) � δ′(zx,l) for each l = L −
1, L− 2, ..., 2.

3. Gradient descent: Update the weights and the biases according to the rule for each

l = L,L− 1, ..., 2. 
wl → wl − η

m

∑
x

δx,l(ax,l−1)T

bl → bl − η

m

∑
x

δx,l
(3.5)

where η is the learning rate.

3.2 Convolutional Neural Networks

Convolutional neural networks are a special type of network, which are usually used for

image-related tasks. Here we introduce some important components of a CNN.
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Figure 3.3: (a) A typical architecture of CNN. (b) convolution. (c) max-pooling.3

Architecture. As shown in Figure 3.3(a), a typical architecture of CNN usually

contains convolution layers, pooling layers and fully connected layers.

Convolution. A convolution operation is shown in Figure 3.3(b), which calculates

the weighted sum of the input pixels covered by the window. Usually we use a sliding

window called a filter or kernel to go over an image and do the convolution operation,

then we can get a corresponding map. We can use different filters to get different maps.

Activation Function. After a convolution operation, an activation function, such

as a sigmoid, tanh or ReLU (rectifier linear unit) function, is applied to each neuron. We

usually call the result an activation and a set of activations in the same map the activation

map or the feature map.

Pooling. A max-pooling operation is shown in Figure 3.3(c), which down samples

the image feature from the previous layer. We apply a pooling operation to each feature

map, so that we can get the corresponding smaller map with some level of translation

invariance.

Fully connected layer. At the end of CNNs, there are usually fully connected layers,

3https://arxiv.org/pdf/1604.07043v3.pdf
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which are similar to DNN. In the last layer, we perform a softmax function to normalize

them to add up to 1. For the image classification, the output of the network is a vector

of class probabilities.

3.3 Recurrent Neural Networks

Recurrent Neural Networks are another special type of network with a loop, which are usu-

ally used for handling sequential data. Here we introduce some important characteristics

of an RNN.

Figure 3.4: A recurrent neural network and the unfolding computational graph.4

Architecture. As shown in Figure 3.4, a RNN could be unfolded into a computational

graph, which is easier to understand. xt, st and ot are the input, hidden state (”memory”)

and output at time step t respectively. The formulas are given as follow:{
st = f(Uxt +Wst−1)

ot = softmax(V st)
(3.6)

Where f is a non-linear function, such as a tanh function and a ReLU function. It is

generally believed that RNNs have a memory which can capture information calculated

before, but they have only very limited memory due to the gradient vanish or explode

problem, which can only look back a few steps.

LSTMs. Long Short Term Memory networks (LSTMs) are special kinds of RNNs,

which use long short-term cells to help the learning of long-term dependencies in RNNs.

As shown in Figure 3.5, Figure 3.5(a) is a standard RNN, while Figure 3.5(b) is a LSTM.

4http://www.nature.com/nature/journal/v521/n7553/pdf/nature14539.pdf
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The main difference is about the calculation of the hidden state, where three gates (input

gate, forget gate and output gate) are introduced into LSTM. Here are the changed

formulas for LSTM:



ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(3.7)

Where ft, it, C̃t, Ct, ot and ht represent the forget gate, input gate, new candidate,

new cell state, output gate and hidden state respectively.

Figure 3.5: a) A standard RNN with a single layer; b) A LSTM with four interacting
layers.5

5http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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CHAPTER 4

FEATURE VISUALIZATION

In this chapter, we introduce different visualization methods to explore what the neural

networks have learned. There has been research on visually understanding how a deep

learning model works, especially what roles neurons play in and what features they extract.

These existing work could be further categorized into four classes, based on their goals and

the algorithms involved: representation depiction methods, input modification methods,

contribution computation methods, and input reconstruction methods. In the following

sections, we will introduce them one by one.

4.1 Representation Depiction Methods

As previously mentioned, a representation for an input refers to a vector of activations in

a hidden layer of a deep neural network. To unfold what the neurons have learned, the

most intuitive way is to visually depict the representation directly.

Activation Map (Feature Map) In CNNs, an activation map is a representation for

an input, which can be directly shown as a bitmap. For example, Karpathy proposed a

javaScript library called ConvNetJs, which uses a single browser to train and visualize

neural networks (Karpathy, 2014a). We can directly observe the changes of each activation

map during the training process (Figure 4.1). Similarly, Yosinski et al. proposed an

interactive visualization system, which helps deal with image and webcam input in real

time with a trained model (Yosinski et al., 2015). As shown in Figure 4.2, for each input,

we can observe the activation maps in each layer in the middle part, and a deconv image,

as well as top nine images from the training set that result in the highest activations for

the selected channel. It is very intuitive to locate an activation map of interest since all

activation maps are changing in real time when the input object is moving. In this case

(Figure 4.2), we find that the activation map indicated by a green rectangle is highly

related to face detection.

Hidden State In RNNs, hidden states also refer to representations for inputs. It is

widely believed that the hidden states are capable to capture the important information

11



Figure 4.1: A snippet of ConvNetJS MNIST demo. Image courtesy of (Karpathy, 2014a).

Figure 4.2: Deep visualization system with different components. Image courtesy of
(Yosinski et al., 2015).

from the input. However, to trace what they have captured in a neural network is rather

difficult. Karpathy et al. used heatmap to show activations in text input (Karpathy

et al., 2015), which reveals that hidden state captures the structure of input text, such as

length of lines and quotes (Figure 4.3). Strobelt et al. visualized hidden state dynamics

by adopting parallel coordinates (Strobelt et al., 2016). In their system, users can freely

select a range of text and those texts with similar hidden state patterns in the dataset

12



would be shown in the match view (Figure 4.4).

Directly visualizing representations can reveal what neurons have learned in a neural

network to some extent; however it may be difficult to be explained in some cases. There-

fore, researchers try to link inputs with representations, attempting to find methods with

high interpretability.

Figure 4.3: Interpretable activations of texts in Linux Kernel and War and Peace LSTMs.
Blue is for high activate value and red is for low value. Image courtesy of (Karpathy
et al., 2015).

Figure 4.4: The interface of LTSMVis. Users can select a range of text in the select
view and similar hidden state patterns are shown in the match view. Image courtesy of
(Strobelt et al., 2016).
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4.2 Input Modification Methods

Input modification methods refer to those methods where we modify the input and then

measure the changes of the output or activations in hidden layers (Grün et al., 2016). We

can therefore observe how the input affects the output. Here we give some examples.

The occlusion method proposed by Zeiler et al. aims to find out which part of an

image is important to the classification result (Zeiler & Fergus, 2014). In their method, a

gray square is used to systematically occlude different parts of the input images and then

measure the changes in activations. Any change in activations can reflect the importance

of an area on an image. If the area is covered up and activations change a lot, it means the

area is important and affects the classification result tremendously. If the area is covered

up but does not affect the activations too much, it means the area is unimportant to the

classification result. As Figure 4.5(b) shows, the heatmap reflects changes in activations

with the red color meaning high value and the blue color meaning low value. It is obvi-

ous that when the face of the dog is covered up, the activations in the middle turn blue

(Figure 4.5(b)) and the probability of classifying it as a dog is very low (Figure 4.5(c) and

(d)), which means the face of the dog is very important in the classification result. In

other words, it is the feature learned by the neural networks. However, Zeiler et al. used

a mono colored gray square, which might affect the result due to sensitivity of CNNs to

edges. Zhou et al. extended their work by using a randomized pixel values patch (Zhou

et al., 2014), which is shown in Figure 4.6. A small randomized pixel values patch is con-

tained in each sliding-window stimuli (Indicated here as the red arrow in Figure 4.6(a)).

The highlighted parts of the middle and right images show their sensitivity to the sliding

window stimuli (Figure 4.6(b) and (c)).

Figure 4.5: (a) an input Image with a gray square; (b) a heatmap for strongest feature
map in layer 5, where heatmap value indicates total activation for each position of the gray
scale; (c) a heapmap of correct class probability, as a function of the occluder position;
(d) the most likely label for each position of the occluder. Image courtesy of (Zeiler &
Fergus, 2014).
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Figure 4.6: (a) images with a sliding-window stimuli (a small randomized patch) (b)
discrepancy maps show the activation response of the sliding-window stimuli; (c) the
actual receptive field. Image courtesy of (Zhou et al., 2014).

There is another method proposed by Girshick et al., which uses different proposed

regions of the image as input instead modifying the original image (Girshick et al., 2014).

They first need to rescale the proposed regions to the same size of the original image

and then put them into the CNNs model. They then measured the response of neurons

of interest to find out what proposed regions of the image activate neurons most. As

shown in Figure 4.7, the neuron in the first row fires on human faces, while the neuron

fires on dog faces and dot arrays in the second row. The other neurons are interested

in a red blob, text, light dot and so on. This method is simple and intuitive which has

been successfully applied to CNNVis (Liu et al., 2016). However, it rescales different

proposed regions regardless of the size and aspect ratio and does not consider the location

of proposal regions in the whole image, which may affect the final result.

Figure 4.7: Top regions for six units in pool 5. Activation values and receptive fields
are shown in white rectangle. Different units are interested in different objects, such as
people (row 1), text (row 4) and specular reflections (row 6). Image courtesy of (Girshick
et al., 2014).
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4.3 Contribution Computation Methods

Contribution computation methods refer to the methods which compute the contributions

of origin image pixels to the activation of interest (Grün et al., 2016). Usually, starting

from the activation of interest, we compute the contribution of each neuron in the lower

layer to this activation interactively until the input layer is reached. In this way we get a

visualization of the features which are most related to the activation of interest.

Zeiler et al. proposed a multi-layered deconvolutional network based on their previous

work (Zeiler et al., 2011), in which the activations are projected from the original feature

space to the input space (Zeiler & Fergus, 2014). However, their method only focus on a

single activation and cannot visualize the joint activity in a layer. The result (Figure 4.9)

shows the complex invariances learned by the network layers, from which we can get some

interesting insight. For example, the images in row 1, column 2 of layer 5 (inside the red

rectangle), show the neurons focus on the background (grass) instead of the foreground.

While Simonyan et al. proposed a backpropagation method based on Baehrens et al.

’s work (Baehrens et al., 2010), which computes the derivative of the class score in regards

to the input image (Simonyan et al., 2013). As shown in Figure 4.8, the images above

are the input images, while the images below are the corresponding saliency maps, from

which we can see which parts are responsible for the class result.

Figure 4.8: The images above show the input images (top-1 predicted class in ILSVRC-
2013), and below show the corresponding saliency maps. Image courtesy of (Simonyan
et al., 2013).
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Figure 4.9: Visualization of features in a fully trained model using a deconvolutional
network approach. In layers 2-5, the top nine activations in a random subset of feature
maps across the validation data are shown, projecting down to the input image pixel
space. Image courtesy of (Zeiler & Fergus, 2014).
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Based on Zeiler et al., and Simonyan et al.’s work, Springenberg et al. proposed

a method called Guided Backpropagation (Springenberg et al., 2014), which makes the

projection clearer. However, their method is only used for CNNs without max pooling

layers. Figure 4.10 shows the visualization result of guided backpropagation and the image

generated is more meaningful and clearer than previous work. It is worth noting that the

difference among these three methods falls in how they propagate the contribution values

through ReLU and the convolutional layers (Grün et al., 2016).

Figure 4.10: Guided backpropagation results of top 10 images patches for 6 units in layer
conv6 (top) and layer conv9 (bottom). Image courtesy of (Springenberg et al., 2014).

After that, Bach et al. proposed a more general method called relevance propaga-

tion (Bach et al., 2015). The contributions of each pixel to the final result is visualized

by using pixel-wise decomposition (Figure 4.12). Grün et al. has compared the effect of

these four methods mentioned above (Grün et al., 2016). It is obvious that the guided

backpropagation has the sharpest visualization result in Figure 4.11.

Another method constructing a class activation map is proposed by Zhou et al. (Zhou

et al., 2015), which uses global average pooling on convolutional layer feature maps to

generate a class activation map showing which parts of the input image are responsible

for the output class of interest. The process is shown in Figure 4.13.

18



Figure 4.11: Comparation of different visualization methods for two images. Image cour-
tesy of (Grün et al., 2016).
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Figure 4.12: The process of the pixel-wise decomposition visualization. The heatmap
shows the contributions of single pixels to the prediction. Image courtesy of (Bach et al.,
2015).

Figure 4.13: The process of class activation mapping. The class activation map highlights
the class-specific discriminative regions. Image courtesy of (Zhou et al., 2015).

These examples above are all about images. Besides, there are some work on texts.

For example, Socher et al. adopted a tree structure to analyze the sentiment of a sen-

tence, showing how each word contributes the final result (Socher et al., 2013), as shown

in Figure 4.14. Bahdanau et al. visualize the attention weight matrix, which represents

the contribution of each French word to its corresponding English one in translation (Fig-

ure 4.15(a)) (Bahdanau et al., 2014). Hermann et al. adopted heatmap to highlight the

important parts that respond different queries (Figure 4.15(b)) (Hermann et al., 2015).

Meanwhile, it is worth mentioning that input modification methods and contribution

computation methods have been used in a visual answer system to show the inference

process (Goyal et al., 2016). For example, in Figure 4.16, important words in text and

pixels in images to responsible for answering the question are both highlighted.
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Figure 4.14: Tree structure to interpreter the sentiment of a sentence. Five sentiment
classes, very negative to very positive (–, -, 0, +, ++). Image courtesy of (Socher et al.,
2013).

Figure 4.15: (a) Visualizing the attention weight matrix in language translation (Bah-
danau et al., 2014). (b) Attention heat maps for answering queries (Hermann et al.,
2015).

Figure 4.16: Examples of interpreting a visual question answering model. Image courtesy
of (Goyal et al., 2016).
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4.4 Input Reconstruction Methods

Input reconstruction methods refer to the methods of reconstructing an image based on

representations in a neural network (Grün et al., 2016). It is widely believed that repre-

sentations capture important information of input. Therefore, the reconstructing input

actually reveals what the neural network learns to some extent. Some papers (Nguyen

et al., 2016) (Mahendran & Vedaldi, 2016) (Liu et al., 2016) group these methods into

two groups, namely activation maximization and code inversion, which is not comprehen-

sive. A more general taxonomy is given by (Grün et al., 2016), which is based upon the

methods used, namely replacement, gradient descent and generative networks. Here we

adopt the latter one, since activation maximization and code inversion can be categorized

into using gradient descent to reconstruct the input images.

Based on the HOGgles approach, instead of pair dictionary learning, Long et al. used

replacement with top-k nearest neighbors in feature space to visualize the feature detected

by a CNN (Figure 4.17) (Long et al., 2014). This method is called the replacement

method.

Figure 4.17: Replacement with top-k nearest neighbors. Image courtesy of (Long et al.,
2014).

As for the gradient method, we consider two types, activation maximization and code

inversion. Activation maximization is the method which aims to find an image that

maximally activates the neuron of interest, revealing what features the neuron detects.

This method can be used for both each of the hidden neurons (Erhan et al., 2009) and

the output neurons (Simonyan et al., 2013). The result of Simonyan et al. is shown in

Figure 4.18. We can see some unclear corresponding objects in the images, where there

are some repeats. It is worth mentioning that a famous application called deep dream
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(inceptionism) adopts a similar idea (Alexander et al., 2015). For image input, it allows a

trained deep learning model to amplify the feature selected by users or enhance whatever

it has detected, which generates some fancy images (Figure 4.19). More interestingly, im-

ages with art styles can be generated if the algorithm is applied interactively with zooming

after each iteration (Figure 4.20). Code inversion is another method aiming to synthe-

size an image starting from the encoded image representation. Mahendran et al. used

a gradient descent optimization to invert representations (Mahendran & Vedaldi, 2015).

Some results are shown in Figure 4.21. Since the function is not uniquely invertible, there

are some different alternatives, from which we can observe the invariances. It is worth

noting that to achieve recognizable images, both activation maximization and code in-

version need to incorporate natural image priors into the optimization process. Different

regularization techniques have been discussed in (Yosinski et al., 2015) and (Mahendran

& Vedaldi, 2016).

Figure 4.18: Reconstructing images with activation maximization method for three
classes, i.e. goose, ostrich and limousine. Image courtesy of (Simonyan et al., 2013).

Figure 4.19: (a) generate a banana image; (b) generate an image with towers and pagodas.
Image courtesy of (Alexander et al., 2015).

The last method proposed by Dosovitskiy et al. is to use a generative network to

reconstruct the input image from the representations of different layers, which need to
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Figure 4.20: Images generated by iterations and zooming from random noise. Image
courtesy of (Alexander et al., 2015).

Figure 4.21: Five possible reconstructions of the reference image with code inversion
method.Image courtesy of (Mahendran & Vedaldi, 2015).
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train an up-convolutional neural network (Dosovitskiy & Brox, 2015). As shown in Fig-

ure 4.22, compared with Figure 4.22(b), reconstructions (Figure 4.22(a)) from FC7 and

FC8 are still similar to the input image, which means this method outperforms Ma-

hendran’s method (Mahendran & Vedaldi, 2015). However, we need to train an up-

convolutional neural network before using it.

Figure 4.22: Reconstruction from layers of AlexNet. (a) an up-convolutional neural net-
work; (b) gradient descent (Mahendran & Vedaldi, 2015). Image courtesy of (Dosovitskiy
& Brox, 2015).

In summary, to reveal what neurons have learned, several simple but effective visual-

ization methods have been proposed, mainly in the form of heatmap and bitmap, as well

as image reconstruction. These methods facilitate users’ understanding of what a deep

neural network has captured in an intuitive manner.
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CHAPTER 5

RELATIONSHIP VISUALIZATION

Apart from revealing what the neurons have learned in a deep learning model, researchers

have also given continuous attention to relationships in a deep learning model, i.e., rela-

tionships between representations and relationships between neurons. In a typical deep

neural network, there are usually hundreds of or thousands of neurons and also millions

of connections between them, which is difficult to be visualized and analyzed. By using

some techniques, such as dimensionality reduction (t-SNE, MDS, etc.), clustering and

bicluster-based edge bundling, etc., different visualizations have been proposed to solve

these problems.

5.1 Relationships Between Representations

In a deep learning model, learned representations refer to the representations of input

data in hidden layers, which are usually high-dimensional vectors of activations. In pat-

tern classification, although the deep learning model is considered as a black box model,

it is widely believed that it has learned high-level representations of the origin obser-

vations. There are many approaches to visualize high-dimensional data, among which,

t-SNE (Maaten & Hinton, 2008) has been widely and successfully applied to visualize

learned representations. For example, Cho et al. used t-SNE to visualize the learned

phrase representations in an RNN encoder-decoder model (Cho et al., 2014), as shown in

Figure 5.1, while Karpathy used it to show the learned image representations (Karpathy,

2014b). From their work, we can see that the learned representations of similar original

data tend to be projected close to each other.

Similarly, Rauber et al. have also used the t-SNE dimension reduction technique

and provided more analyses about the projection (Rauber et al., 2016), which confirms

the known and reveal the unknown. In their work, the relationships between learned

representations are visualized by projecting high dimensional vectors to scatterplots in a

2D plane, providing insightful visual feedback about neural networks. Here we introduce

Rauber et al.’s work in detail.

Figure 5.2(a) shows the t-SNE projection of the last MLP (Multilayer perceptron, a

feedforward artificial neural network model) hidden layer activations on the SVHN test
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Figure 5.1: (a) t-SNE projection of the learned phrase representations in an RNN encoder-
decoder model; Image courtesy of (Cho et al., 2014). (b) t-SNE projection of the learned
image representations in a CNN; Image courtesy of (Karpathy, 2014b).

Figure 5.2: t-SNE projection of layer activations on SVHN test subset. a) last MLP
(Multilayer perceptron, a feedforward artificial neural network model) hidden layer, before
training; b) first MLP hidden layer, after training; c) last MLP hidden layer, after training;
d) last CNN hidden layer, after training. Image courtesy of (Rauber et al., 2016).
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subset before training, which shows poor class separation. Figure 5.2(b) and (c) show

the projection of trained MLP hidden layer activations, i.e., the first and the last hidden

layers respectively. And the projection of the last CNN hidden layer activations is shown

in Figure 5.2(d). Comparing Figure 5.2(a) with (c), the visual separation between classes

in Figure 5.2(c) becomes better, from which we can confirm that neural networks indeed

learn to detect higher-level features, which are useful for class discrimination. While

comparing Figure 5.2(b) with (c), we find the later layers in properly trained neural

networks could discriminate higher-level features of the original observations. Comparing

Figure 5.2(c) with (d), it is obvious that in this case CNN outperforms MLP, which

indicates that we can use projection to evaluate and compare the performance of deep

learning models. More interestingly, we notice that each class seems to be split into two

visual clusters (Figure 5.2(d)). After exploring two green clusters corresponding to digit

“2”, we find that these two clusters correspond to dark digits on light backgrounds and

light digits on dark backgrounds. Noting this, we can improve the classification accuracy

by data preprocessing. Actually this pattern is not easy to be discovered with other

conventional methods, while it is easily detected by projection. Also we can explain some

misclassifications easily. For example, there is a misclassification point (digit “9”) in one

green cluster (digit “2”). After checking it, we find the dark border of digit “9” is similar

to “2”.

5.2 Relationships Between Neurons

In a deep learning model, neurons in different layers are connected by edges. To some

extent, the weights of these edges can indicate different relationships between neurons

across different layers. However, directly visualizing all of them easily results in severe

visual clutter. To resolve this problem and to better analyze the relationships between

neurons and how they relate to each other, Liu et al. proposed CNNVis, which aims for a

better analysis of deep convolutional neural networks (Liu et al., 2016). In CNNCVis, they

formulated a CNN as a directed acyclic graph (DAG) and proposed a hybrid visualization

to reveal features learned by neurons and the interactions between them, aiming to disclose

the inner working mechanism of CNNs. In order to display a large network, they first

aggregated related layers, and then clustered neurons based on average activation value

among a number of input images. As shown in Figure 5.3, each large rectangle represents

a neuron cluster (Figure 5.3(A)), and Figure 5.3(B1) shows learned features of each neuron

and Figure 5.3(B2) shows a reorder activation matrix. In the network, we can observe that

the pictures tend to be higher level and more similar in the later layers, which means the
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neuron clusters have learned the corresponding representations. In the reorder activation

matrix, the average activation value of the i-th neuron in the j-th class is represented

by the color of a cell in the i-th row and the j-th column, from which we can not only

gain some insight about the activation situation of the neuron cluster, but also know the

relationships between neurons and classes. After using biclustering-based edge bundling to

reduce visual clutter, the connections (edges) are revealed between different layers. There

is an “in-between” layer between two neuron clusters, where small green and red regions

are used to indicate the proportion of the number of positive (green) edges and negative

(red) edges (Figure 5.3(C)). By observing the connections between different neurons, we

can get some insight into the network training situation.

Figure 5.3: The interface of CNNVis. (A) a large rectangle for a neuron cluster; (B1)
learned features for neurons; (B2) a reorder activation matrix; (C) “in-between” layer.
Image courtesy of (Liu et al., 2016).

To reveal the relationships between neurons in the same layers, besides clustering

neurons based on average activation value, the relationships between neurons can also

be visualized by projection based on the Pearson’s correlation coefficient between neu-

rons (Rauber et al., 2016). Figure 5.4 shows the activations and neuron projections of the

last CNN hidden layer before and after training on a MNIST test subset. Before training,

if we brush on class “8” (yellow color), the corresponding neurons disperse in different

places over the projection (Figure 5.4(a) and (b)). After training, the class clusters are

separated much better, and if we brush on class “8”, the corresponding neurons form a

cluster in the neuron projection (Figure 5.4(c) and (d)). This shows sets of highly related

neurons are created and work together in the classification task after the training process.
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Figure 5.4: Activation projection (left) and corresponding neuron projection (right) of
the last CNN hidden layer activations before training (top) and after training (bottom)
performing on MNIST test subset. Image courtesy of (Rauber et al., 2016).

In this chapter, the examples have demonstrated the potential of projection tech-

niques to explore the relationships between representations of observations learned by

neural networks and the relationships between neurons. We can gain some highly valu-

able qualitative information from the projection. However, this visualization technique

also has some drawbacks. First, visual clutter exists in the scatter-plot visualization. Sec-

ond, projection (such as t-SNE) is time-consuming. Last, since the result of projection

could vary every time, it is hard to trace a point of interest and do some comparisons.

Compared with the scatter-plot visualization used in projection, the DAG-based visual-

ization is more intuitive. The DAG-based visualization shows the whole network structure

and learned features of each neuron. In addition, the relationships between neurons and

classes are more intuitive by using the reorder activation matrix. However, since it uses

directed acyclic graph, it is hard to extend to other networks with loop, such as RNNs.

Also in their implementation, CNNVis currently only supports the offline training process,

which focuses on analyzing snapshots of the CNN model.
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CHAPTER 6

PROCESS VISUALIZATION

Some researchers are interested in the whole process of deep learning models, and have

proposed interactive systems to visualize neural network structures and training informa-

tion, which can facilitate people in learning and training deep learning models. In this

chapter, we first describe some interactive systems to visualize neural network structures,

and then introduce some visualizations on training information.

6.1 Neural Network Structure

To help design and train neural network models, many interactive systems have been pro-

posed. Basically, we can categorize them into three classes, namely grid-based diagrams,

node-link diagrams and block diagrams. While some of the previous work mainly focuses

on shallow neural network, such as (Zell et al., 1994) (Streeter et al., 2001) (Tzeng & Ma,

2005), etc., in this survey, we mainly describe recent and representative systems here.

Grid-Based Diagrams Grid-based diagrams are the visualization techniques which

visualize a network’s layer-by-layer activation patterns or learned features. Therefore,

grid-based diagrams mainly apply feature visualization techniques. Here are two exam-

ples.

One example is the ConvNetJs proposed by Karpathy (Karpathy, 2014a). Figure 4.1

shows a snippet of ConvNetJS MNIST demo, from which we can observe the activations of

each layer. However, ConvNetJs does not support users to interactively create new inputs.

Another example is the deep visualization toolbox proposed by Yosinski et al (Yosinski

et al., 2015). In contrast, their system enable to deal with image and webcam input in

real time with a trained model. Different components are shown in Figure 4.2, such as the

input in the left-top corner and the whole layer of conv5 activations in the middle. For

each input, we can observe the activations in each layer, and a deconv image, as well as

top nine images from the training set that result in the highest activations for the selected

channel.

Grid-based diagrams allow us to observe the activations of each layer easily. However,

the main drawback is obvious. The activation patterns and features learned are not well
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organized enough to show the architecture of a network. Therefore, it is hard for us to

capture the whole picture of a neural network.

Node-Link Diagrams In contrast to grid-based diagrams, node-link diagrams visualize

neurons as nodes and connections as edges, which easily give us an overview of what a

network looks like. A typical node-link diagram is shown in Figure 3.1. Here we introduce

some interesting examples.

Figure 6.1 shows a toy visualization system called the tensorflow playground, which

is designed for non-experts to gain an understanding of deep learning (Smilkov et al.,

2015). Input units are two abstract real-value features (x1, x2 ∈ [−1, 1]) and various

mathematical combinations. Units in hidden layers are shown as small boxes, where

the activation heatmaps inside indicate the situation of the neurons. The connections

between units are shown as curves whose width and color indicate weight values (blue

for positive, while orange for negative). The output of the network is shown as a square

with a heatmap indicating the classification results. There are many parameters we can

change, such as the number of layers, the number of neurons in each layers, the input

features and learning rate. After setting parameters, we can press the play button to see

the working flow of the whole network, which is very intuitive.

Figure 6.1: The tensorflow playground.1

However, the visualization that directly depicts all the neurons and edges easily leads

to the visual clutter problem when applied to a large scale network. Some methods are

proposed to alleviate this problem.

As shown in Figure 6.2, based on the idea of “search, show context, expand on de-

mand” (Van Ham & Perer, 2009) and the focus-plus-context techniques (Shneiderman,

1http://playground.tensorflow.org/
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1996), Harley hid the edges rather than depicted them directly. (Harley, 2015). When

users hover on a node, the corresponding edges are shown. While when users click on

a specific node, the corresponding information is shown. Through this 3D visualization

of a CNN, we can easily study the architecture of the neural network and observe the

input-ouput process intuitively. However, 3D visualization has the occlusion and distor-

tion problem. A similar idea is to only show edges whose values belong to the top 50%

(Figure 6.3) (Chung et al., 2016).

Figure 6.2: A 3D interactive node-link diagram of a CNN trained to recognize handwritten
digits. Hue and brightness indicate the activation level of each node.2

Figure 6.3: The network visualization of ReVACNN. Image courtesy of (Chung et al.,
2016).

Another method to alleviate the visual clutter problem is proposed by Liu et al. (Liu

et al., 2016). As shown in Figure 5.3, they first aggregated related layers, and then

clustered neurons based on their average activation value among a number of images.

Also they used a biclustering-based edge bundling technique to reduce visual clutter.

2http://scs.ryerson.ca/∼aharley/vis/conv/
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Node-Link Diagrams are widely used to visualize neural networks due to their sim-

plicity and intuitiveness. However, the scalability problem is the main weakness of this

visualization.

Block Diagrams Block diagrams replace each layer of nodes with a solid block and

replace the connections between neurons with a single arrow line pointing from one block

to another block. In this way, we can somehow solve the scalability problem. A typical

block diagram is shown in Figure 6.4 (Bruckner, 2014). However, since neurons of a layer

are represented as a block, it does not allow for interaction or a detailed analysis.

Figure 6.4: A typical block Diagram. Image courtesy of (Bruckner, 2014).

To solve this problem, a possible solution is to use a hierarchical layout. A repre-

sentative example is the tensorboard (Google, 2015), which is shown in Figure 6.5. For

example, when users double click a block, the block will be expanded and some detail

information is shown at the same time, which allow users to do some further exploration.

Figure 6.5: A tensorboard visualization of a simple neural network. Image courtesy of
(Google, 2015).
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6.2 Training Information

Meanwhile, in order to get some insight from the training process, some visualization

work are done on visualizing training information, which could help to debug and design

a better deep learning model. The training information contains many different types of

data, such as input data (images, text, etc.), hidden layer data (activation maps, filters,

hidden state, etc.), output data (loss function, classification results, etc.), some parameters

(weights, biases, etc.), as well as hyper-parameters (the number of layers, the number of

neurons in each layer, learning rate, batch size, etc.).

Basically, there are two ways to use these data. First, we can store the training

information during training, and visualize it after training is finished. For example, the

tensorBoard uses line chart and histogram to visualize the log event data , which are shown

in Figure 6.6 and Figure 6.7 (Google, 2015). While Bruckner et al. used the confusion

matrix to analyze the classification results (Figure 6.9) (Bruckner, 2014). The purpose

is to examine the process of training and try to find some patterns. Second, we can

visualize the training information during training, so that we can detect some exceptions,

and then stop, refine and restart the training. An example of this is the tensorflow

playground (Smilkov et al., 2015), which shows the neurons situation and loss function

value during training (Figure 6.1). Another example is shown in Figure 6.8. Similarly,

loss function, parameter values and gradient values are visualized by using a line chart

and histogram (Skymind, 2013). Further, it is better to allow users to directly adjust the

parameters and manipulate the system during the training. However, to implement a real-

time manipulation is rather difficult, due to the intensive and demanding computation.

Chung et al. proposed a proof-of-concept visual analytic system to steer a neural network

(i.e., the capabilities of dynamic node/layer addition/removal) in real time during the

training process (Chung et al., 2016). They find that the “20-20-21” model (i.e., three

convolutional layers followed by ReLU and pooling layers after each convolutional layer;

20, 20 and 21 filters in each layer) could not directly trained well. On the other hand, if

they train the “20-20-20” model first and add a filter after 15 epochs, a better training

result on the ”20-20-21” model could be obtained, as shown in Figure 6.10.

Through visualizing the training information, we can have a better understanding and

are able to train a deep learning model well. However, the existing work merely leverage

relatively simple visualization techniques, such as line chart, bar chart, and histogram,

etc., which are intuitive but not that informative. On the other hand, current visualization

methods require many coordinated views and figures to visualize the training information,

which may increase the burdens on users’ mental processing and hinder gaining insight
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into the data.

In this chapter, we describe the process visualization of deep learning models, which

consists of two aspects: model visualization (the structure of neural networks) and training

information visualization. To better understand, design and train deep learning models,

there still exists significant room for improvement regarding the process visualization.

Figure 6.6: Tensorflow Events. (a) accuracy; (b) cross entropy; (c) max/layer1/weights;
(d) max/layer1/biases. Image courtesy of (Google, 2015).

Figure 6.7: Tensorflow Distributions and Histograms. (a) Distributions, layer1, acti-
vations/biases, train/test; (b) Histograms, layer1, activations/biases, train/test. Image
courtesy of (Google, 2015).
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Figure 6.8: Visualization of deeplearning4j3. (a) loss function of the current minibatch
and iteration; (b) histogram of parameter values; (c) histogram of gradient values; (d)
line chart of parameters and updates. Image courtesy of (Skymind, 2013).

Figure 6.9: Confusion Matrix. Rows indicate actual classes and columns indicate pre-
dicted classes. Image courtesy of (Bruckner, 2014).

Figure 6.10: Effects of dynamic filter addition. (a) the “20-20-21” model without filter
addition; (b) the “20-20-21” model with filter addition. Image courtesy of (Chung et al.,
2016).

3http://deeplearning4j.org/visualization
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this survey, we first reviewed the basic background of deep learning. Then we intro-

duced two common problems in the deep learning field: how deep learning models work

and how to design and improve deep learning models. According to existing visualiza-

tion work trying to tackle these problems, we classify them into three categories, namely

feature visualization, relationship visualization and process visualization. After that we

introduced several studies on these three categories. From this survey, we know several

ways to integrate visualization with the deep learning models: 1) visualizing which fea-

tures have been learned by deep learning models; 2) visualizing the relationships between

learned representations of observations and the relationships between neurons; 3) visu-

alizing the whole working flow of the deep learning models; and 4) visualizing training

information to diagnose and refine the deep learning model interactively. There are sev-

eral advantages of doing so: 1) understand what features the deep learning models learn;

2) grasp the inner working mechanism of deep learning models; 3) facilitate people to

design and train better deep learning models; and 4) make the deep learning models more

understandable and accessible to people.

7.2 Future Work

As previously mentioned, visualization techniques have demonstrated great advantages in

understanding and improving deep learning models. However, the current applications of

visualization on deep learning still have room for improvement.

Firstly, most of the existing work focuses on image data and CNNs. We can extend

visualization techniques to other data (e.g., video) and models (e.g., Deep Q-networks),

and may potentially gain more insights into them. In addition, more applications could

be explored by combining visualization with deep learning models. For example, they

could be applied to summarize and analyze massive online video data, which help obtain

more thematic information and get more semantic-rich results.
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Secondly, in order to better visualize model structures and the process of training

data, new designs are needed, especially when encountering scalability issues. Traditional

designs often result in a clutter graph, which may hinder users understanding. Researchers

have already developed several approaches to alleviate visual clutter (Ellis & Dix, 2007),

such as sampling, topological distortion and animation. We can further utilize them to

resolve potential scalability problems. Another issue is that the current designs are not

informative, involving too many coordinated different views. Although some of them

are straight forward, it is difficult to reduce user’s misinterpretations and the attentions

required for the users, especially when there is too much information needed to be shown

at a time. Therefore, there still exists room for improvements on effective designs.

Last but not least, to help users better steer and train neural network models, a visual

analysis system that can give instant and iterative feedback as well as provide a friendly

user interface and smooth interaction is needed. However, to design a real-time system,

we may face the computation capability issues. In the future, we may overcome this

bottleneck for real-time visual analysis with the aid of fast-growing computing power.
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