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ABSTRACT

In this paper, we introduce a novel visualization method which al-
lows people to explore, compare and refine the major communities
in a large network. We first detect major communities in a net-
work using data mining and community analysis methods. Then,
the statistics attributes of each community, the relational strength
between communities, and the boundary nodes connecting those
communities are computed and stored. We propose a novel method
based on Voronoi treemap to encode each community with a poly-
gon and the relative positions of polygons encode their relational
strengths. Different community attributes can be encoded by poly-
gon shapes, sizes and colors. A corner-cutting method is further
introduced to adjust the smoothness of polygons based on certain
community attribute. To accommodate the boundary nodes, the
gaps between the polygons are widened by a polygon-shrinking al-
gorithm such that the boundary nodes can be conveniently embed-
ded into the newly created spaces. The method is very efficient, en-
abling users to test different community detection algorithms, fine
tune the results, and explore the fuzzy relations between communi-
ties interactively. The case studies with two real data sets demon-
strate that our approach can provide a visual summary of major
communities in a large network, and help people better understand
the characteristics of each community and inspect various relational
patterns between communities.

1 INTRODUCTION

Relationships in complex systems are often represented as graphs
and graph visualization enables people to intuitively observe graph
structures and is thus widely used. Real-world graphs often have
the community structures property, in which nodes are joined into
tightly knit groups. Analyzing community structures is of great im-
portance for people’s understanding of graph structures. Previous
researchers have proposed a variety of methods to detect and eval-
uate such structures [14, 27].

However, for large graphs, common visualization methods will
encounter the scalability problem. For example, the node-link di-
agram may produce hairball-like results which obscures the com-
munity structures, preventing people from gaining insight in large
graphs. As community structures widely exist in real world graphs,
some visualization systems have been designed to reveal them
[32, 33, 34]. However, existing visualization solutions usually tar-
get community attributes or hierarchical clustering structures while
several issues still remain. First, the communities are often detected
using data mining and community analysis algorithms. Different
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algorithms or different parameter settings will lead to different re-
sults. Users often want to know the quality of the communities
generated by different methods. For overlapping or fuzzy clusters,
there exist boundary nodes which cannot easily be put into any clus-
ters. Besides, relation patterns among communities differ in a va-
riety of ways. For example, one community may connect to oth-
ers via many low-degree boundary nodes while another community
may connect to others only through boundary nodes of a rather high
degree. Therefore, developing an effective visualization method to
show the major communities in a large network, their qualities, and
the boundary nodes connecting them will be very desirable.

In this paper, we present a novel visualization approach to ad-
dress these issues. We first use the Voronoi treemap [6], an ef-
fective space-filling technique that can support hierarchical data
structures, to generate community boundaries. We then enlarge
the gaps between polygons in order to create space for boundary
nodes. Boundary nodes will be positioned in the gaps according
to their relations with major communities. Finally, we provide the
detailed view, statistic view and node-link view to reveal more de-
tailed connection properties. Our method can provide an overview
of a large network and allow users to evaluate, compare and refine
the community structures in the network.

The major contributions of the work presented in this paper are:
• A graph layout based on MDS and the Voronoi treemap to

position polygons of different areas representing major com-
munity structures in a large graph.

• An intuitive visualization scheme using various attributes of
polygons such as smoothness to encode attributes of commu-
nities.

• A visualization scheme for boundary nodes.
• Rich user interactions that enable users to merge, split, and

refine communities.

2 RELATED WORKS

Graph visualization has a rather long history [20]. Two main graph
visualization methods are adjacency matrices and node-link dia-
grams. Adjacency matrices methods [19, 12] cannot intuitively
reveal community structures. They also consume more space for
large graphs and are not well suited for path-related work [18].
Node-link diagrams are often generated with force-directed lay-
out algorithms, such as the Kamada-Kawai model [23] and the
Fruchterman-Reingold model [15]. However, for large graphs, the
results might become visually cluttered and the community struc-
tures cannot be easily revealed. Techniques like node coloring are
widely used to highlight the community information in node-link
diagrams [22]. Bubble Sets [10] uses a contiguous contours to en-
code the nodes from the same community. Riche and Dwyer [31]
proposed a compact rectangle shape to draw each community. Line-
Sets [3] and Kelp Diagram [11] draw continuous curves instead of
the contours in BubbleSets. KelpFusion [28] provides a hybrid so-
lution bridging the hull techniques like Bubble Sets and line-based
techniques such as LineSets. These methods are good at illustrat-
ing overlapping communities but the quality of the communities as
well as the boundary nodes cannot be easily revealed. In addition,



they face a color overlapping problem when the number of commu-
nities increases. In comparison, our method provides an easy way
to estimate the community size and quality and avoids the color
overlapping problem by assigning the boundary nodes different lo-
cations rather than multiple colors.

Many optimization techniques are introduced to reduce the vi-
sual clutter problem in large graphs. One widely used scheme is
node aggregation. By using one abstract node to visually represent
a cluster of nodes, the resulting node-link diagram is able to work
for massive graphs. Muelder and Ma combined it with a treemap to
generate a hierarchical graph layout that avoids visual clutter [29].
ASK-GraphView [2] is a node-link based visualization system that
allows users to hierarchically explore large graphs. Archambault et
al. proposed an interactive visualization system which allows users
to explore and modify graph hierarchies in multiple possible ways
[4]. Despite their flexibility in graph exploration, the relations be-
tween clusters are omitted. In contrast, our system is designed to
focus on the cluster relations and the nodes which connect clusters.
Vehlow et al. used the abstract node shape to encode the community
fuzziness [34]. In this paper, we use a similar idea but the polygo-
nal shape used in our system is quite different from the star shape
used in their work in order to utilize space more efficiently.

Some works use glyphs or metaphors to convey clusters in a net-
work. PIWI [36] uses vertex plots to describe node neighboring
relations between communities but does not provide an intuitive
topology overview for the whole graph. GMap [16] and its variants
[17, 21] use a map metaphor and represents each community as a
country, each node as a city, and each relationship as a road. Their
approaches can intuitively show different clusters and their relation-
ships. Our work focuses on conveying the community quality and
the boundary nodes connecting communities.

3 DATA MODEL AND DESIGN TASKS

In this section, we define the graph data model, introduce some
terms used later, and present some design goals for our system.

3.1 Data Model and Term Definition
In this paper, we consider undirected graph model as G = (V,E)
with n = |V | nodes and m = |E| edges where E ✓ V ⇥V , (u,v) 2
E () (v,u) 2 E . We model the community structures as a set
of communities {C1, ...,CK} where K indicates the number of com-
munities for Ck ✓V , 1  k  K. For each node v 2V , we define its
community as fC(v) = c where v 2 c,c 2 {C1, ...,CK}.

We then model the clustered graph as a weighted undirected
graph GC = (VC,EC). The clustered graph GC directly corresponds
to an original undirected graph G. Each node vC 2 VC represents
one cluster c 2 {C1, ...,CK} and |VC| = K. If there exists an edge
between node vC

i and vC
j , we use wei j to indicate the relation strength

between community Ci and Cj.
To simplify the presentation, we use the following terms in the

rest of our paper:
• Internal Degree[14]: For node v 2 V , its internal degree

dI(v) = |{(u,v) : u 2 fC(v),(u,v) 2 E}|.
• External Degree[14]: For node v 2 V , its external degree

dE(v) = |{(u,v) : u /2 fC(v),(u,v) 2 E}|.
• Specific External Degree: For node v 2 V , its specific ex-

ternal degree towards community Ck dEk (v) = |{(u,v) : u 2
Ck,(u,v) 2 E}|

• Internal Node: An internal node is v 2V , where dE(v) = 0.
• Boundary Node: A boundary node is v 2V , where dE(v)> 0.
• Internal Edge Number: The number of internal edges in com-

munity Ck is mc = |{(u,v) : u 2Ck,v 2Ck}|.
• External Edge Number: The number of external edges for

community Ck is ec = |{(u,v) : u 2Ck,v /2Ck}|.
• Cluster Polygon: A Voronoi cell which visually represents a

cluster.

• Cluster Gap: The gap between two cluster polygons where
boundary nodes are positioned.

3.2 Design Tasks

We want to achieve the following design goals for our community
visualization system.

T1. Communities should be easily recognized and compared.
An effective community visualization method should clearly reveal
major community clusters without visual clutter. In addition, clus-
ter properties like cluster size and cluster quality need distinct rep-
resentations in order to compare different communities. We accom-
plish this goal by grouping clustered nodes into several Voronoi
polygons. Polygon shape, color and size are used to represent dif-
ferent cluster properties.

T2. The relation strength between communities should be
presented. Evaluating the relation strength between communities
is another important task for community analysis. Communities
with stronger relations are more likely to generate new connections
or to form a new united community. Having an overview of com-
munity relation strength will help people better understand inter-
actions between communities. We put highly related communities
geometrically closer to fulfill this purpose.

T3. Boundary nodes between communities should be illus-
trated. Apart from getting the overview of clusters statistical infor-
mation, a visual representation of boundary nodes between commu-
nities is necessary for many applications [13, 24]. Giving a clear vi-
sual depiction of boundary nodes will help both evaluate these clus-
ter measurements and understand how communities are connected.
Boundary nodes are emphasized in our system by positioning them
inside cluster gaps to achieve this goal.

T4. Hierarchical structures and internal nodes. A network
sometimes has a hierarchical structure in which smaller commu-
nities can form a larger community. Revealing such substructures
allows people to better understand a large network at different levels
of detail. We adopt a treemap layout to support this requirement.

T5. Interactions should be supported to enable dynamic
community exploration and refinement. Users should be able
to dynamically merge clusters, rearrange the global layout, probe
highly connected substructures, and highlight nodes of interest. In
addition, a smooth transition during the changes of views should be
provided to keep users’ mental map. We support rich user interac-
tions to satisfy these requirements.

4 VISUAL DESIGN

In this section, we first describe our visual encodings schemes,
some alternative design choices we considered, and the interactions
supported in our system. The layout generation process is summa-
rized in Fig.1.

4.1 Cluster Polygons Encodings

Based on the design tasks listed above, we designed a visualiza-
tion method to summarize major communities in a large network.
To reveal community quality, size, and other attributes, we extend
Voronoi treemap [6] to represent the clustered graph GC.

In our system, we use subdivided Voronoi cells to represent dif-
ferent communities, which has several advantages. First, the dis-
tinct polygonal shape of individual Voronoi cells can help people
easily recognize different communities. Second, compared with
typical visualization methods which encode a community using a
sized circle, our method uses screen space more efficiently as it is a
space-filling method. In addition, some community detection algo-
rithms result in a hierarchical structure which can be conveniently
presented using our method. Furthermore, the edges between adja-
cent Voronoi cells can be utilized to demonstrate community rela-
tions. We use color as another visual channel to illustrate different



(a) (b) (c) (d)
Figure 1: The layout generation process: (a) Use MDS to gather strong connected cluster nodes together. (b) Original Voronoi treemap
represents different clusters with the size attribute. (c) Shrink each Voronoi cell to form cluster polygons and cluster gaps. (d) Arrange external
nodes along cluster gaps and adapt the corner-cutting algorithm for each cluster polygon.

communities, providing stronger visual cues to people for commu-
nity recognition.

The size of a community can be intuitively encoded with the area
of the corresponding Voronoi cell. Cluster quality is another piece
of crucial information for quantitative evaluation and comparison
of communities. The cluster quality can be computed by internal
connectivity, external connectivity and their combinations in var-
ious ways [35]. In our design, we use the curve smoothness to
encode cluster quality. The higher the cluster quality, the smoother
the polygon boundary is. By observing the shape, color, size and
curve smoothness of Voronoi cells, people can easily recognize dif-
ferent communities and visually compare their attributes. Using
this method, design task T1 can be accomplished.

According to design task T2, apart from illustrating community
properties, relation strengths between communities should be visu-
alized too. From the Gestalt Law of Proximity [8], people perceive
objects to have strong relations when they are positioned together.
Based on this principle, we choose to position communities with
strong relations geometrically close. In this way, we can get the re-
lation strengths between communities by inspecting the Euclidean
distance between communities.

4.2 Boundary Nodes Encodings

As described in design task T3, boundary nodes are important
to the community analysis. To create space for boundary nodes,
a polygon-shrinking algorithm is developed and applied to each
Voronoi cell such that a gap will be created between each pair of
shrinked cluster polygons (see Fig. 2(a)). Boundary nodes which
connect two or more communities are positioned along these gaps
(see Fig. 2(b)).

To better reveal the relation patterns between communities, we
design a degree-sensitive layout algorithm for boundary node lay-
out. As illustrated in Fig. 2(b), there are two kinds of nodes po-
sitioned along the gap between clusters A and B: 1) cluster A’s
boundary nodes that linked with nodes from cluster B. 2) cluster
B’s boundary nodes that linked with nodes from cluster A. For each
cluster, we make a central axis from this cluster towards the other
cluster and its boundary nodes are always allocated on the right side
of this axis. The larger the node degree is, the closer it is positioned
near the central axis. Besides, for node v in a specific gap, we calcu-
late the ratio of its internal degree and external degree towards the
other community k: r = dI(v)/dEk (v). Nodes with the same ratio
are allocated in the same parallel axis. For nodes with r = 1, they
are arranged in the middle axis. Otherwise, nodes with more edges
connected to a community are positioned closer to the correspond-
ing cluster polygon. By adapting this degree-sensitive layout, nodes
with similar degrees from one community are grouped together. To
visually highlight nodes with high degrees, we use the node radius
as the second visual channel to encode node degree.

Next we discuss several issues to be addressed for our visual
design:

Gap determination. For a node connected to three or more clus-
ters, we need to determine which gap the node should be allocated
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Figure 2: (a) Voronoi cell shrinking; (b) Boundary node encoding.

to. There are two possible solutions: 1) Make a duplication of that
node in each gap if necessary; 2) Allocate the node in the gap be-
tween its cluster and the cluster with which it has the largest number
of connected edges. Considering that it might cause misunderstand-
ing when users want to count the number of high-degree boundary
nodes of one community if we duplicate several copies of one node
in an overview graph, we choose the second solution as our default
setting. However, users are able to switch to the first solution in our
system at any time.

Gap length difference. Due to the limitation of the Voronoi
treemap generation algorithm, the generated Voronoi cell edges
might have quite different lengths. Therefore, the gaps between var-
ious pairs of communities are also different which prevents people
from comparing the boundary node distributions in different gaps.
To solve this problem, we propose a detailed view for boundary
nodes at cluster gaps. Users can select two adjacent cluster poly-
gons in the overview graph, and then the corresponding detailed
view for that gap will be generated. These detailed views are of
the same size and scale which helps people explore and precisely
compare the boundary nodes between different communities.

Boundary node overlapping Assume that there are several
boundary nodes of a very high degree between two communities.
Even in the detailed view, all the other nodes with low degrees may
overlap and obscure these high degree nodes since they are all po-
sitioned near the border based on the degree-sensitive layout algo-
rithm. We propose two solutions for this problem: 1) Apart from
providing a linear scaling method for degree-position mapping, we
also provide a log-based scaling method to separate the overlapping
nodes. In addition, we support a zooming interaction in the detailed
view to further differentiate those nodes.

4.3 Interactions

Our visualization system supports rich user interactions to achieve
T5 in the design goals.

Cluster merging. Users are able to select any number of clus-
ters and group them together to make a merged cluster. The selected
clusters are regarded as sub-clusters while their size and color at-
tributes are kept.

Cluster splitting. By selecting the merged cluster and clicking
the splitting button, users are allowed to split aggregated clusters.

Cluster rearranging. In our initial layout algorithm, cluster
polygons with strong relations are located geometrically adjacent.
However, weak relations between cluster polygons positioned a



long distance from each other will be difficult to examine. We pro-
vide an interaction to overcome this drawback. Users can select any
two cluster polygons and click the Rearranging button on the tool
bar, and then a new Voronoi layout with these two clusters adjacent
will be regenerated.

Cluster dividing. As described in design task T4, our visualiza-
tion method should explore the substructures in a community. Tak-
ing advantage of the hierarchical structures in the Voronoi treemap,
users can show the next level Voronoi diagram by selecting a cluster
polygon of interest and clicking the Substructure button. In addi-
tion, our system can draw a force-directed layout to show the topo-
logical structure for internal nodes within a community when the
number of nodes is reduced to a manageable level.

Node highlighting. We adopt a node highlight technique for
users to further explore a specific node of interest. Users can hover
over the node they want to inspect and a tooltip will pop up to dis-
play the summary information of that node.

For cluster merging, cluster splitting, and cluster rearranging, the
MDS algorithm will be re-executed in order to get the new com-
munity layout from the updated community relations. Since MDS
results may change totally even if there is only a small modifica-
tion in the similarity/dissimilarity matrix, the community might be
transformed to another location after performing one of the above
three interactions. To better preserve users’ mental map, we add
animations to illustrate the transformation process. For the cluster
splitting operation, the split clusters are located around the former
aggregated cluster in our implementation.

4.4 Alternative Designs
A key function of our design is to demonstrate community qual-
ity. Though we use the curve smoothness to encode the community
quality, we considered other options such as color, blur, enhanced
border. Fig. 3 shows four major encoding methods. We briefly
compare these methods and a formal user evaluation is presented in
Section 6.2.

Quality: Lower

Smoothness

Border

Color

Blur

Higher1 2 3 4 5

Figure 3: Four major encoding methods for community quality using
curve smoothness, border stroke, color saturation, and blur. The
community quality improves from left to right.

Curve smoothness Edge shape is an intuitive visual channel for
human beings to recognize. Vehlow [34] encodes cluster fuzziness
as a star-shape polygon. However their method is not suitable for
our tasks as the star-shape design does not use space efficiently and
thus affects the boundary node layout in the cluster gaps. To in-
tuitively represent the community quality and keep the boundary
nodes layout at the same time, we propose a curve smoothness en-
coding scheme.

Border We can make use of a polygon boundary to show com-
munity quality. The polygon border can be used in two different
ways. First, the width of a boundary can clearly represent a con-
tinuous scalar value. Second, we may also use dashed boundaries.
Different degrees of dash and gap length can represent different lev-
els of quality. However, a short edge with a thick border or a wide

gap dash may lead to ambiguity compared with long edges. Due to
the varied length of Voronoi cell edges, these two methods may not
suit our visual design.

Color It is possible to use color saturation, opacity or brightness
to indicate community quality. Human beings have a good percep-
tion of color, however the color channel is better for indicating cate-
gorical data. From task T1, we need to show different communities
and it is better to reserve colors to represent different communities.
Reusing the color channel for quality may confuse users.

Other visual channels We also try to encode community qual-
ity with other visual channels like blur, sharpness and texture.
Nonetheless, these visual channels cannot provide aesthetic dis-
plays. Furthermore, these designs cannot be precisely perceived
by people and people have difficulty in estimating the values these
designs represent.

5 SYSTEM OVERVIEW AND IMPLEMENTATION

In this section, we introduce our system architecture and overall
visualization process. First, in a data processing stage, raw graph
datasets of different formats are imported, filtered and organized
into a unified form. This stage allows using kinds of clustering
algorithms to detect possible communities for dataset without la-
beled community information. For each dataset, a clustered graph is
generated so that weighted-nodes represent communities of differ-
ent size and weighted-edges represent the edges between connected
communities. Both the original graph’s and clustered graph’s topol-
ogy information are recorded. Network attributes like node degree
and modularity are pre-calculated for further usage. Fig.4 illustrates
the pipeline of our visualization process.

Graph Dataset

Clustering
Algorithm

Data Filtering MDS

Voronoi
Treemap

Nodes
Layout

Interaction

(a) (b) (c) (d)
Figure 4: Overview of our visualization process pipeline. (a) Raw
graph datasets; (b) Data processing stage; (c) Layout optimization
stage; (d) User interaction stage.

The user interface of our system consists of multiple components
as illustrated in Fig. 5: The dataset selection menu and the interac-
tion toolbar are on the top of the system. From the main view, we
can see a Voronoi treemap based visualization that summarizes ma-
jor communities in a large network. On the right top corner, there
is a detailed view which is used to explore and compare boundary
nodes in polygon gaps. And on the right bottom corner, we put a
statistics view to illustrate quantitative attributes of different com-
munities and the node-link view to show the topological structure
of communities. We also have a visualization control menu to al-
low users to dynamically switch between different visual encoding
schemes.

The entire system was mainly implemented in Flask1 and D32.
Next, we describe the implementation details of the layout opti-
mization stage.

Multidimensional scaling(MDS). An intuitive way to display
community relations is to position communities with strong rela-
tion geometrically close. Clearly, there exist many methods to de-
fine community relation strength. Here, we are primarily concerned
with the number of edges between communities, which is a simple
but effective way to measure community relations. But our method
is not limited to this relation strength definition, any other relation

1Website: http://flask.pocoo.org/
2Website: http://d3js.org/



criterion can be adopted. We use Multidimensional Scaling(MDS)
[25] to achieve this goal. Since our purpose is to put communities
with strong relations together, the dissimilarity matrix used in MDS
is computed based on the community relation weight matrix W as
discussed in Section 3.1.

Voronoi treemap layout. As mentioned before, we use the
Voronoi treemap to represent the hierarchical structure of commu-
nity in our design [7]. We adopt the Voronoi treemap generation
algorithm of Nocaj and Brandes [30] by using Aurenhammer’s al-
gorithm [5] for weighted Voronoi diagrams. The generation algo-
rithm is an interactive process which works as follows:

• Initialize each site with the precomputed position and weight.
• Compute an initial weighted Voronoi Diagram.
• Iterate until the iteration number achieves the predefined iter-

ation limit or the result is satisfactory:
– Move sites to the centroid and reduce the corresponding

weights if necessary.
– Recompute the weighted Voronoi diagram.
– Adapt weights to better match Voronoi cell area to ide-

als.
– Recompute the weighted Voronoi diagram.

Though the final site positions are very likely to change after
the above iterative process, the relative positions of the correspond-
ing Voronoi cells have been kept. Thus, the relative distance be-
tween cluster polygons can be used to encode community relation
strength. We use the community site positions calculated by MDS
as the initial Voronoi cell site positions. As described in Section
4.1, we use the area of each Voronoi cell to encode the correspond-
ing community size. The initial site weights are directly initialized
to be sizes of communities too.

Cluster polygon shrinking. According to the definition of
Voronoi diagram, all the points in one Voronoi cell are closer
to its Voronoi site than to any other sites. As Fig. 2(a) illus-
trates, taking Cluster A as an example, the cluster polygon shrink-
ing algorithm works as follows: Suppose its Voronoi site’s coor-
dinates are pA(xA,yA), for each polygon vertex pi(xi,yi), we de-
fine vector �!vi = (xi � xA,yi � yA) and the shrinked vector �!ui =
(|�!vi |�CScale) ·�!vi /|�!vi | where CScale is a constant shrinking scale
value. Then, the shrinked polygon vertices coordinates are changed
to p0 = (xi + ux,yi + uy). Another approach is to define �!ui =�!vi ⇤CScale. Although this approach can scale down each Voronoi
cell, this may result in very short gaps around small polygons.

Corner-cutting and cluster quality. By default, the edge curve
smoothness encodes cluster quality. To differentiate varying de-
grees of smoothness, we use Chaikin’s corner-cutting algorithm [9].
After considering various community quality criterias, we decide to
make conductance as our default quality criterion. Conductance is
a simple but useful measurement for community quality. It repre-
sents the ratio between the number of edges inside the community
and the number of edges leaving the community [24].

6 EXPERIMENTS AND EVALUATIONS

In this section, we first present the performance of our system, then
we evaluate four different community quality encoding schemes
with a controlled user study. Finally, we select two example
datasets for case studies to illustrate how our design can help re-
veal major communities in a large network.

6.1 Performance Evaluation
There are three major steps in the layout optimization stage: MDS
layout, Voronoi treemap layout, and boundary nodes layout. The
time complexity of MDS layout algorithm is O(n2). By adapt-
ing the methods proposed by Nocaj and Brandes[30], the Voronoi
treemap layout algorithm is O(nlogn) for each iteration. Since our
system is designed to support dozens of communities in each layer,
the time complexity is acceptable. The last step is an O(n) time

complexity algorithm. As described in Section 5, we implemented
our system as a web service. We use a MacBook Pro with 2.6GHz
Intel Core i5 CPU with 8GB memory as the Web server, and con-
duct the case studies in the Chrome Web browser (version 38). The
system can perform interactively after the data processing stage.

6.2 User Study: Community Quality
To evaluate the design options for encoding community quality,
we designed an experiment which compares four different methods
shown in Fig. 3. We recruited 22 unpaid undergraduate or graduate
students (18 male, 4 female) from a variety of majors for the exper-
iment. The experiment environment was built as an interactive Web
system using JavaScript and Python. Each subject needs to answer
40 questions (10 for each method). In each question, subjects were
given a polygon and asked to specify its quality. The quality ranges
from 1 to 5 and is encoded by one of the four methods. Before the
test, the subjects can practice test questions with answers so that
they can be familiar with the encoding methods before the test. For
each question in the test, the subjects were instructed to click on a
start button which shows the question and triggers the timer. The
timer would stop once the subjects answer the question. The re-
sponse accuracy and response time were recorded. The response
time was recorded in milliseconds.

We computed the average response time of participants catego-
rized by the four methods and found that the participants spent
3.76 seconds in the color saturation condition(SD = 3.53), 5.92
seconds in the border stroke condition(SD = 6.60), 5.21 seconds
in the curve smoothness condition(SD = 4.01), and 4.63 seconds
in the blur condition(SD = 4.25). Regarding the response accu-
racy for the questions of each method, on average, the participants
answered 90% questions correctly in the color saturation condition
(SD = 10%), 50% questions correctly in the border stroke condition
(SD = 24.7%), 73.6% questions correctly in the curve smoothness
condition (SD = 12.3%), and 59.5% questions correctly in the color
blur condition (SD = 16.4%).

We used the Representations Repeated Measure Analysis of
Variance test to analyze the response time and accuracy. It re-
vealed a significant effect for Representations in response time
(F(3,63) = 10.38, p < 0.001) and accuracy (F(3,63) = 22.17, p <
0.001). Pair-wise comparisons showed that the response time for
the border stroke method is shorter than for the color saturation
method (p < 0.001) and the response time for the curve smooth-
ness method is shorter than for the color saturation method too
(p < 0.001). From the pair-wise comparisons, we can also see
that the response accuracy difference between the blur method and
the border stroke method is not significant(p > 0.05), while other
method pair combinations have a significant difference in response
accuracy (p < 0.05).

The results show that the color saturation method outperforms
other methods in both response time and accuracy. The curve
smoothness method has a better response accuracy compared with
the border stroke method and the blur method while it has no signifi-
cant response time benefit. As discussed in Sec. 4.4, the color chan-
nel is better for indicating categorical data. People may also make
mistakes when perceiving and comparing the saturation of different
colors. Thus we select the curve smoothness method as our default
solution for encoding community quality. However, users are free
to switch between these four methods in our system.

6.3 Case Study I: DBLP
Our first dataset is extracted from DBLP 3. In this dataset, each
node represents a paper while each edge connecting two nodes
means these two papers have at least one common author. Confer-
ences are regarded as communities and each paper belongs to the
conference it is presented at. For this dataset, we want to achieve

3http://dblp.uni-trier.de/db/



the following goals: 1) G1: Visually summarize the number of pa-
pers presented at different conferences and the relevancy of these
conferences. 2) G2: Discover potential relations between confer-
ences in different domains. 3) G3: Demonstrate that some papers
presented at one conference can be highly related to other confer-
ences at the same time.

We first select eleven conferences in the sub domain of computer
science including Computer Networks, Operating System, Com-
puter Architecture and Programming Languages, and the like. This
dataset comprises 1032 papers published from 2003 to 2005. The
results are shown in Fig. 5. From the figure we can see that these
eleven conferences are positioned and grouped based on their rele-
vancy. In Fig.5 (a) four conferences in the Programming Language
field are grouped on the left-hand side. Note that ASPLOS is a con-
ference not only targeting at the area of Programming Language but
also the Computer Architecture technology. Thus, it is positioned
near the ISCA, which is one of the top conferences in Computer
Architecture. In Fig. 5 (b), two conferences in the field of Com-
puter Networks are grouped on the top right corner. Another two
operating system related conferences stand on the right-hand side
as illustrated in Fig. 5 (c). The area of each Voronoi cell shows
the number of papers published at the corresponding conference.
Taking ISCA and PPoPP as an example, it is obvious that the area
of ISCA Voronoi cell is nearly twice the area of PPoPP. It turns out
that PPoPP accepts nearly 30 papers every year while ISCA accepts
more than 50 papers annually. This result shows that our system can
accomplish goal G1.

Our default cluster quality evaluation is based on conductance
which exposes the ratio between internal edge number and exter-
nal edge number for one community. In Fig. 5, we can easily see
that ISCA’s quality is better than ASPLOS’s quality and HPCA’s
quality. Both the boundary nodes between HPCA and ISCA or the
boundary nodes between ISCA and ASPLOS are closer to ISCA.
This phenomenon means these boundary nodes have more connec-
tions with ISCA than HPCA or ASPLOS. For each pair of commu-
nities, though their boundary nodes have equal number of external
degrees, ISCA has a larger internal edge number. This is why ISCA
has better quality.

To achieve goal G2, we need to pay attention to the boundary
nodes. For example, there are many boundary nodes along the gap
between PLDI and OOPSLA which implies a strong relation be-
tween them as both conferences are in similar fields. On the con-
trary, FAST, a conference targeting at file systems and storage tech-
nology has a weak relation with conferences on Computer Archi-
tectures like ISCA and HPCA. As file system field is related to the
operating system field to a certain extent, we want to explore the
relation between FAST and HotOS. For the detailed view of the
boundary nodes in Fig. 5 (d), we can see that there is a relatively
strong relation between FAST and HotOS. An unexpected finding is
that almost all the boundary nodes are laid on the FAST side. This
suggests that the authors who presented at both HotOS and FAST
are likely to publish more papers at FAST.

USENIX ATC is a comprehensive conference focusing on a wide
range of topics. From the overview, we can see that many boundary
nodes of USENIX ATC are positioned closer to FAST, HotOS, and
SIGCOMM. Fig. 5 (e) shows the detailed view of the gap between
USENIX ATC and FAST. One paper presented at USENIX ATC is
laid near the middle of the cluster gap. From the tooltip we know
that this paper has common authors with twelve papers presented at
FAST. The title of this paper, ”A Precise and Efficient Evaluation of
the Proximity Between Web Clients and Their Local DNS Servers”,
also validates that it is highly relevant to the field of files systems.
From this example, we can see the goal G3 can be achieved in our
visualization method.

These explorations suggest how our visual design can be uti-
lized to summarize information about conference papers and re-

veal the connection patterns between conferences based on the co-
authorship relations.

6.4 Case Study II: JDK Dependency Network
We use the software class dependency network data of the JDK
1.6.0.7 framework [1], collected from the Koblenz Network Collec-
tion (KONECT) [26], as our second example. Nodes in this dataset
represent classes, and edges between them indicate that one class
depends on the other.

As illustrated in Fig.6, we first examine the classes within the
java.* package which have 2,379 classes (vertices) and 14,619 de-
pendencies (edges). First, we found that the Voronoi cell of pack-
age java.lang is surrounded by lots of boundary nodes. Most of the
boundary nodes belong to other packages like java.util, java.awt
and java.text, and the like. The majority of these boundary nodes
are located away from the middle axis, which means these boundary
node degrees are generally small. This phenomenon illustrates that
many other classes have dependencies on classes in the java.lang
packages. The Java.lang package is the package that contains core
classes related to language functionality and runtime system. This
explains why so many classes have dependencies on the java.lang
packages. By exploring the boundary nodes between java.lang and
java.awt, we find an unexpected pattern that the java.lang package
also has some dependencies on the java.io package. This is because
many classes in java.lang need to import Exception classes and IO
classes into the java.io package.

Next we examine the relationship between Java.awt and
Java.util. From the figure we can see that lots of boundary nodes
from java.awt package form an almost straight line. To solve the
clutter problem due to the large number of nodes, we hide the
boundary nodes from the java.util package and expand the width
of boundary nodes from the java.awt package. This phenomenon
does not only show that many classes in the java.awt package have
dependencies on the java.util package. In addition, all these classes
only depend on a few classes in the java.util package. From the
detailed view, we can see that the classes with a high dependence
degree are data structure classes like Collection and Set. The lay-
out classes in java.awt need to use these data structures to manage
GUI items. A few handler classes are necessary for classes in the
java.awt package as well.

In addition, we find that there are several nodes with very large
degrees laid on the central axis of the gap between java.util and
java.lang. These nodes include java.lang.Class, java.lang.String
and java.lang.Object. All the classes are inherited from the
java.lang.Object class by default. This case study suggests that us-
ing our visualization methods can help users explore the highly de-
pendent classes in a software package.

7 DISCUSSION

The case studies have clearly demonstrated that our method can re-
veal the major communities, their aggregation attributes and hierar-
chical structures, and their relationships in a large network. The
visualization can also support rich user interactions for users to
explore boundary nodes, refine and compare clusters, and zoom
into each community for more detailed information. The basic
framework is extensible and can incorporate other graph visualiza-
tion techniques such as edge bundling and other visual encoding
schemes for community attributes.

Our method also suffers several weaknesses. First, our method
enables people to compare the size of communities by observing the
areas of Voronoi cells. However, it is difficult for people to accu-
rately estimate the area of a polygon. Thus, the method is only good
for qualitative analysis but not quantitative analysis. Second, simi-
lar to the MDS method, our method can use Euclidean distance to
encode the relation strengths of two communities. However, there
is no guarantee that all the relationships can be preserved in the



2D layout. This is a fundamental problem for many point-based
approaches that use distance to encode relationships.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an interactive visualization method based
on the Voronoi treemap to reveal the major communities and their
relationships in a large network. It provides a novel approach to
help people understand community characteristics and investigate
various relation patterns between communities. Compared with ex-
isting visualization methods, our approach gives an effective way
to depict community attributes like size and quality. In addition,
boundary nodes that connecting different communities are illus-
trated in a degree-sensitive way. Users are allowed to explore and
compare boundary node patterns with the detailed views. Interac-
tive community adjustment including moving, merging and split-
ting are provided with animated transitions. Two case studies with
the DBLP co-authorship data and JDK class dependency data have
demonstrated the effectiveness of our methods. Our future work in-
cludes filtering techniques to solve the problem of boundary node
overlapping. We also plan to improve our method to illustrate more
internal node attributes for each community.
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Figure 5: This figure shows the DBLP dataset consisting of eleven conferences in the fields of Programming Language, Computer Networks,
Operating System and Computer Architecture, etc. Nodes represent papers and edges represent two papers having at least one common
author.
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Figure 6: JDK java package dependency network comprising 2379 classes (vertices). (a) Package java.lang are imported by other classes by
default. (b) Classes in package java.awt sometimes import classes from java.util. In the mean time, they depend on classes in the same package
to a great extent. (c) Several individual classes from java.lang and java.util with high degrees. (d) The filtered topology structure for sub-package
java.nio. (e) The second level structures of sub-package java.awt.


