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ABSTRACT
Parallel coordinates have been widely used to analyze
high-dimensional data. Numerous methods have been
designed to provide overview patterns in parallel co-
ordinate plots. However, detailed information is also
important in data analysis. When several lines over-
lap or are close to one another, distinguishing detailed
information of polyline crossings is difficult. In this pa-
per, we present a novel approach to address the problem
of polyline crossing ambiguity by using data labels. We
place different labels along various polylines to give cues
for differentiation of lines. We bend the lines and opti-
mize the arrangement of curved lines to provide space
for clear visible labels. An energy system that mod-
els attractive and repulsive forces of lines is used to
guide the search for optimized line arrangement. The
experiments on several real datasets demonstrate the
effectiveness of our approach.
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1. INTRODUCTION
Parallel coordinates [14] have been widely used to vi-
sualize multidimensional information or datasets. In
parallel coordinates, multidimensional datasets can be
easily displayed via a 2D mapping, wherein each dimen-
sion is drawn as a vertical axis and each data item is
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drawn as a polyline that connects its data values on
parallel vertical axes. The design of 2D parallel axes
allows the simultaneous display of multiple dimensions,
and thus, high-dimensional datasets are visualized in a
single image.

Many methods have been proposed to provide good
overviews of parallel coordinates [11, 27, 19]. Visu-
alizing a parallel coordinate plot (PCP) in overview
involves displaying discernable high-level polyline pat-
terns in the PCP. Under this criterion, precisely per-
ceiving which segments are connected to form certain
polylines is minimally important, and thus, showing de-
tailed connectivity information in local areas of the PCP
is frequently compromised. However, the objectives for
visualizing a PCP in overview and in detailed view are
different. In the latter, it requires to display clearly vis-
ible connection information between polyline segments.
Identifying precisely which two segments are connected
in one polyline is critical to allow users to trace a poly-
line and answer certain specific questions. Therefore,
visualizing parallel coordinates in detailed view is es-
sential.

To provide detailed views of PCPs, many approaches
adopt zooming, colors [10, 33], or the curvature continu-
ity of curves [9, 13] to show detailed information interac-
tively. However, if two data items have the same value
in a certain data dimension, then their corresponding
polylines will cross at the same point on the dimension
axis. Consequently, the zooming method still cannot
help users obtain clear connection information between
polylines segments by tracing polylines. We call this
problem “polyline crossing ambiguity”. An example of
such case is shown in Fig. 1(a). Although using vari-
ous colors to encode different polylines can help address
this problem, colors are typically used to encode clus-
ter information and reliably distinguishing more than
12 colors is difficult [30]. In addition, distorting lines
to make them curve and using the curvature continu-
ity of curves can help differentiate polylines. However,
distinguishing different curves remains difficult in some
cases, as shown in Fig. 1(b).

In this paper, we propose a novel technique to visualize
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Figure 1. Polyline crossing ambiguity (a) is not solved
by curves (b), but is solved by our methods (c).

parallel coordinates with data labels, wherein different
labels can provide cues for differentiating polylines. We
draw data labels as segments that connect data values
on axes to form polylines. The label text starts from
its data value on the first axis and is repeated until
it reaches its data value on the last axis. Given that
some lines may overlap or are near on another, we al-
low lines to curve and disperse to supply space for vis-
ible labels. We model parallel coordinates as a system
with attractive and repulsive forces. Attractive forces
prevent curves from bending too much, whereas repul-
sive forces disperse overlapping lines or those that are
too close to one another. The optimized curve layout for
the labels can be obtained by minimizing system energy
via a linear programming solver. Compared with the
NP-hard problem of drawing labels alongside lines [4],
our approach is more efficient and effective because it
replaces lines by labels. The contents of data labels
range from names of data items (e.g., animal names) to
the attribute values of data items or other information.
The lengths of data labels range from short phrases to
long sentences. Based on the contents of labels, users
can easily trace polylines and obtain important labeling
information for each polyline. The experiments on sev-
eral real datasets demonstrate the effectiveness of our
approach.

2. RELATED WORK
We aim to design a technique that will address the poly-
line crossing ambiguity problem. We first provide a
summary of various parallel coordinates methods, and
then discuss data labeling approaches for graphs and
maps.

2.1 Parallel coordinates
Parallel coordinates have been widely used in multivari-
ate visualization. Heinrich and Weiskopf [11] summa-
rized the developments of parallel coordinates by fo-
cusing on visualization techniques. Meanwhile, we re-
summarize their work from the perspective of providing
high-level or low-level patterns in PCPs in this section.

2.1.1 Overview methods
One of the major tasks in exploring parallel coordinates
is to reveal important overall patterns in data. Some ap-
proaches [16, 21] first use the k -means algorithm [5] to
extract data cluster information, and then apply various
colors and opacities to visualize different data clusters.
However, the appropriate value of k maybe difficult to

set. Therefore, numerous clustering methods based on
statistical information in PCP images have been pro-
posed. For example, Novotny and Hauser [22] clustered
data based on 2D-binning images for each pair of adja-
cent axes. Zhou et al. [33] visually clustered data based
on the line-interaction energy computed from the PCP
image. Hierarchical clustering methods have also been
adopted to help users explore the multilevel clustering
information [7, 24]. In addition, many filtering-based
methods [3, 15] can reduce visual clutter caused by too
many crossing or overlapping lines in PCPs, while pre-
serving the significant features in the original data.

2.1.2 Detailed view methods
Revealing the overall structures of PCPs is essential
in data analysis, whereas visualizing detailed views of
PCPs is important to correctly perceive individual re-
lations between data items. Therefore, many methods
have been proposed to support interactive detailed-view
explorations of PCPs. For example, brushing [10, 28]
can be used to select certain groups of polylines. 2D-
binning images [22], histograms [33, 8], scatterplots [32],
and graphs [25] can also be used to find interesting pat-
terns. These interaction methods typically highlight
selected groups of polylines by using different colors.
However, if the lines in the same group have the same
color, the polyline crossing ambiguity problem within
the group remains unsolved. If the lines in the same
group have different colors, then users cannot distin-
guish similar colors when too many colors are used in
the group. Our approach does not use colors to high-
light polylines; therefore, it can be used with other in-
teractive techniques.

Straight polylines can be curved to form edge bundles,
and the curvature continuity can provide cues for the
differentiation of polylines [9, 33]. In some cases, how-
ever, using curves still cannot help the differentiation of
polylines, whereas our method is able to, as shown in
Fig. 1(c).

2.2 Data labeling in graphs and maps
Placing text or symbol labels in graphs and maps is
an important research area in information visualiza-
tion. Labels are textual descriptions that convey in-
formation in graphical drawings; a number of tasks can
be accomplished effortlessly by using labels [23]. Many
automatic-label-placement techniques have been pro-
posed and discussed for node labels [26, 20], edge la-
bels [29], and both node and edge labels [18]. Label
placement is typically an NP-hard problem [17]. A re-
cent survey [6] classified labeling problems and summa-
rized solutions. Unlike other label placement solutions
that require additional display space for labels, Wong
et al. [31] proposed a GreenArrow method that draws
text labels to form edges between nodes in graphs. Our
approach follows the concept of drawing text labels to
form lines, but is specifically designed to address the
polyline-crossing-ambiguity problem in parallel coordi-
nates.
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Figure 2. Parallel coordinate labels shown in placement
schemes of (a) vertical labels and (b) labels perpendicu-
lar to polylines.

(a) (b) (c) (d)

Figure 3. Placement examples: (a) overlapping labels,
(b) curved labels, (c) curved labels that result in addi-
tional overlapping, and (d) dispersed labels with global
optimization.

3. LABEL DESIGN
Many techniques have been proposed to reveal over-
all patterns and detailed information in parallel coor-
dinates. In this paper, we introduce a novel method
to address the polyline-crossing-ambiguity problem (see
Fig. 1(a)) in parallel coordinates. We use different la-
bels to provide cues for differentiation of polylines in
parallel coordinates, and thus, assist users in discerning
detailed information of data. We draw the label text of
each polyline from its data value on the first axis and
repeat the text until it reaches its data value on the last
axis. The labels can be placed with different schemes.
For example, a label can be vertical, perpendicular to
its original polyline, or perpendicular to the dispersed
curve. The contents of data labels can be the name of
the data item or any attribute value of the data item.
Users can easily trace polylines based on the contents
of data labels, and thus, obtain detailed information
on each polyline. The color of data labels can be used
to encode other interesting information such as cluster
information.

3.1 Placement schemes
Labels are textual descriptions that reveal information
or clarify structures in graphical drawings. Therefore,
labels are important in information visualization. How-

ever, given limited screen space, determining how to
place labels automatically without overlapping is a dif-
ficult problem. Label placement is an NP-hard prob-
lem in graphs and maps [17]. Our method places labels
along polylines in parallel coordinates; therefore, we do
not have to consider the NP-hard problem of seeking
space for the label layout. Our placement schemes in
this section discuss methods for placing labels along
polylines and arranging underlying polylines for better
label placement.

Typically, solving a labeling problem involves searching
and arranging space for good label assignment. Our
placement problem is simple, because polylines are lo-
cated in parallel coordinates, and our design involves
placing labels along polylines without requring addi-
tional drawing space. Different datasets may have var-
ious features and different users may have various re-
quirements; therefore, our labeling technique provides
three placement schemes that users can select based on
their scenarios. The first and second schemes, namely,
vertical labels and labels perpendicular to polylines, ro-
tate labels but do not move underlying polylines. The
third scheme, namely, labels perpendicular to the dis-
persed curves, bend polylines to curve them and dis-
perse curves for improved label appearance.

3.1.1 Vertical labels
In vertical label mode, all characters are drawn along
the underlying polylines regardless of how the polylines
are rotated. Fig. 2(a) shows an example of such draw-
ing.

3.1.2 Labels perpendicular to polylines
In this mode, the characters in a label are rotated to
make them perpendicular to their corresponding poly-
line as shown in Fig. 2(b). The moving directions of
polylines are more discernable in this mode; thus, we
use this mode as the default value for the rest examples
of this paper.

3.1.3 Labels perpendicular to the dispersed curves
Polylines can be easily differentiated one by one based
on our drawn data labels (Fig. 2). However, when a
PCP has several overlapping polylines, the correspond-
ing labels also overlap, thus preventing the distinguish-
ing of polylines, as shown in Fig. 3(a). If only a small
number of polylines overlap or are near one another,
a straightforward method is to bend these polylines
and arrange them in order with intervals for visible la-
bels (Fig. 3(b)). However, this straightforward method
is unsuitable for some general cases. For example, in
Fig. 3(c), a bunch of nearby polylines (i.e., polylines
“B”, “E”, “F”, “I”, and “H”) are detected with a thresh-
old value. Because the threshold value is not large
enough, another nearby polyline “G” is not considered
as a part of this group of nearby polylines. The polyline
“G” is finally overwhelmed by other labels. Regardless
of the value of the threshold, this type of polyline “G”
may still exist. To address this problem and improve the
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Figure 4. The attractive and repulsive forces.

label layout, we propose an effective placement scheme
with labels perpendicular to the dispersed curves. The
positions of the dispersed curves are computed under an
optimization process that can globally optimize the lay-
out of all the labels. After applying our new scheme, the
previously hidden polyline “G” (see Fig. 3(c)) becomes
visible in Fig. 3(d). In addition, our approach bends
polyline “C” which is below polyline “G” to make the
label of polyline “C” clear and not overlapped by upper
polyline “G”.

To display the labels perpendicular to the dispersed
curves, we need to first search for the layout of the dis-
persed curves, and then draw labels along the curves.
We model the parallel coordinate plot as a system with
attractive and repulsive forces. Attractive forces pre-
vent the curves from bending too much, whereas repul-
sive forces disperse overlapping curves or those that are
too close one another. Minimizing the system energy
can help obtain the optimized curve layout for the la-
bels of PCPs.

In our proposed PCP system, the total energy of the
polylines consists of three energy terms as follows:

Etotal =cattractionEattraction+

crepulsionErepulsion+

cothersEothers

(1)

where Etotal is the total energy of the PCP, Eattraction

is the energy term that describes the attractive forces
from the original positions of the lines before distortion,
Erepulsion is the energy term that describes the repul-
sive forces between neighboring lines, and Eothers is the
energy term for other purposes. cattraction, crepulsion,
and cothers are the weighting coefficients of the corre-
sponding energy terms. The forces are considered in
each column (i.e., the adjacent two axes in a PCP), so
we discuss our energy model only for one column in the
rest of this section.

We intend to use efficient linear programming as a de-
sign guideline to minimize the energy Etotal. Therefore,
all the following energy terms are designed to be linear
functions.

Attractive force term

In the energy system, the overlapping and nearby lines
are detected and bent to leave space for visible labels.
We set the attractive force term that prevents each line
from being bent too much. For one column in a PCP,
we assume that n lines (i.e., data items in the dataset)
exist. The Eattraction term is modeled as follows:

Eattraction =

n∑

i=1

s∑

j=1

||P ′
ij − Pij || (2)

where Pij is a point on the straight line i (the red line
in Fig. 4), and P ′

ij is the corresponding control point

on the curved line i (the dotted red curve in Fig. 4).
We set the constraint that Pij and P ′

ij have the same
horizontal coordinates. s control points are sampled
for each line, and the curve shapes are specified by the
positions of the control points. In this paper, s is set
to be 3, and third-degree Bezier curve is used to draw
the curves. The value of s can be changed, and other
drawing algorithms, such as Hermite and Catmull Rom
curves, can be also used in our system.

Repulsive force term
We design the repulsive force term to disperse neigh-
boring lines to leave the space for labeling. For n lines
(i.e., data items in the dataset), the sets of neighboring
lines are detected with a threshold distance value t. We
set t to be the height of the used font size. In a set of
neighboring lines, the distance of any pair of endpoints
or control points with the same horizontal coordinates
is no more than the value of t. For example, in Fig. 4,
line i, i + 1, and i+ 2 are in such a set, and line i+ 3,
i + 4, and i + 5 are in another set. We assume that A
sets exist, and each set has ak lines, where 1 ≤ k ≤ A,
and the kth set is indicated as Sk. Note that A may be
0, and a line may not be in any set or be in two sets
(i.e., a set of lines above it and a set of lines below it).
The Erepulsion term is modeled as follows:

Erepulsion = −
A∑

k=1

s∑

j=1

ak∑

i<m,P ′
ij<P ′

mj

||P ′
ij − P ′

mj ||

where ||P ′
1j − P ′

2j || = ||P ′
2j − P ′

3j || = ...

= ||P ′
ak−2j − P ′

ak−1j || = ||P ′
ak−1j − P ′

akj
|| ≤ t,

∀(r, u) ∈ R, if ∃k, r, u ∈ Sk, then ∀j, P ′
rj < P ′

uj ,

else no such k, then ∀j, P ′
uj − P ′

rj ≥ t

(3)

Note that the negative sign indicate that the minimiza-
tion of Erepulsion becomes the maximization of the dis-
tance between P ′

ij and P ′
mj . However, the repulsive

force is designed to disperse nearby lines to obtain enough
space for visible labels. Thus, our dispersing will stop
if the space is enough. To achieve this effect, we set the
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Figure 5. Experiments on the “sleep in mammals” dataset: (a) original plot; (b) with labeling; (c) with the names of
mammals that have the most danger from other animals shown; (d) with the names of mammals that have the least
danger from other animals shown.

constraint of ||P ′
ij −P ′

mj || ≤ t and the distances of each
pair of adjacent points are equal. In addition, when
a set of neighboring lines is bent, non-intersecting lines
within this set cannot become intersected, and the other
lines that are not in this set but are above or below this
set should not be freshly overlapped by the new curves
in this set(see Fig. 3(c) and (d)). Therefore, we detect
all the pairs of adjacent lines (r, u), where lines r and u
are not intersected, and ∀j, 1 ≤ j ≤ s, then P ′

rj < P ′
uj .

We use R to indicate this set of pairs. In Fig. 4, all the
pairs of adjacent lines (r, u) are (i,i-1), (i,i-2), (i-1,i-3),
(i-1,i-4), (i-2,i-3), (i-2,i-4), (i-3,i-5), (i-4,i-5).

Other terms
The Eothers energy term extends our system to be suit-
able for additional effects. For example, the gravitation
energy term [33] and attracting electrostatic force [12]
can be used as our Eothers to achieve the clustering ef-
fect.

Finally, our energy model Etotal is minimized with a
linear programming solver lp solve [1], which is based on
the revised simplex method and the branch-and-bound
method.

3.2 Content schemes
The contents of the data labels are flexible. We can
set the labels to be the names of data items (e.g., ani-
mal names), the attribute values of data items, or other
pieces of information. The lengths of the data labels
range from short phrases to long sentences. Basing on
the contents of labels, users can easily trace the poly-
lines and determine the labeling information of each
polyline as well.

3.3 Color schemes
We use the contents of data labels to give cues for the
differentiation of lines. Therefore, the color channel can
be used to further encode other interesting pieces of in-
formation, such as attribute values and cluster informa-
tion.

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of our
labeling method through experiments on three real datasets.

4.1 Sleep in mammals

53



columns undervote overvote Bush Gore Nader

2 10570 21855 387703 387703 387703
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Figure 6. Experiments on the “fl2000” dataset: (a) orig-
inal plot; (b) with county names as data labels; (c) with
the “technology” as data labels and color encoding the
“columns”.

We tested our method on a “sleep in mammals” dataset
with 42 mammals and 10 variables [2]. The 10 variables
are body weight in kg (BDW), brain weight in g (BRW),
nondreaming sleep in hrs/day (NDS), dreaming sleep
in hrs/day (DS), total sleep in hrs/day (TS), maximum
life span in years (MLS), gestation time in days (GT),
predation index (PI), sleep exposure index (SEI), and
overall danger index (ODI). For the variable PI, value 1
means the mammal is least likely to be preyed upon; for
the variable SEI, value 1 means the mammal sleeps in a
well-protected den; for the variable ODI, value 1 means
the mammal has the least danger from other animals.
The dataset has 62 mammals with some missing val-
ues at first. We removed those mammals with missing
values and use the 42 mammals to test our method.

Fig. 5(b) shows our labeling result over the original plot
in Fig. 5(a). Our result successfully disperses the over-

Bush Gore

387703 387703

undervote overvote

10570 21855

(a) (b)

Figure 7. Enlarged blue rectangular areas for Fig. 6:
(a) with visible county names of the blue rectangular
region in Fig. 6(b); (b) with the visible relationship be-
tween “overvote”, “technology”, and “columns”(i.e., the
enlarged blue rectangular region in Fig. 6(c)).

lapping and nearby polylines, clearly shows their labels
(mammal names), and gives cues to clarify the cross-
ing ambiguity cases when users are tracing the poly-
lines. From Fig. 5(c), we can notice that the mammals
with the most danger from other animals are “Sheep”,
“Horse”, “Rabbit”, “Goat”, and “Cow”, all of which
also have the highest values of sleep exposure index and
predation index. However, in Fig. 5(a), we cannot de-
termine how many and which mammals have the high-
est ODI value, not to mention the identification of the
lines that have the highest ODI value, the highest SEI
value, and the highest PI value, because those lines rep-
resenting “Brazilian tapir” and “Asian elephant” cause
the crossing ambiguity problem. In Fig. 5(d), the names
of 11 mammals with the lowest ODI value (i.e., the least
danger from other animals) are also clearly shown, and
9 of them also have the lowest SEI value, 6 of them (i.e.,
“Red fox”, “Man”, “Little brown bat”, “Eastern Amer-
ican mole”, “Chimpanzee”, and “Big brown bat”) have
both the lowest SEI value and the lowest PI value. An
interesting finding is that the lines labeled “Gray seal”
and “Cat” start from the smallest ODI value then go
to some bigger SEI values, and finally come back to the
smallest PI value. In addition, the labeled polylines for
each mammal on the last three axes (i.e., PI, SEI, and
ODI) are also traceable. In this example, we can see
clearly that our approach can help users identify over-
lapping or nearby polylines, resolve polyline-crossing-
ambiguity problems, and reveal detailed information in
the data.

4.2 fl2000
The dataset named “fl2000” [2] is the county data from
the 2000 presidential election in Florida, USA. For each
of the 67 Florida counties, the data record the type
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47 8 455 230 5140 25 82 3

9 3 68 46 1613 8 70 1

(a)

(b)

(c)

Figure 8. Experiments on the “cars” dataset: (a) original
plot; (b) with car names as data labels; (c) with car
origins as data labels.

of voting machine used (technology), the number of
columns in the presidential ballot (columns), the un-
dervote, the overvote, and the official certified votes for
each of the 12 presidential candidates (we only chose
the most three popular candidates “Bush”, “Gore”, and
“Nader” for our experiment). Fig. 6(b) is our labeling
result over the original plot shown in Fig. 6(a); county
names are used as data labels. Our result reveals de-

(a)

(b)

(c)

Figure 9. Enlarged blue rectangular areas for Fig. 8(c).

tailed information in the data. Fig. 7(a) shows an en-
larged sub area in Fig. 6(b). In this area, we can no-
tice that in the county of “Broward”, “MiamiDade”,
“PalmBeach”, “Pinellas”, and “Orange”, Gore’s votes
are higher than Bush’s votes.

Furthermore, our data labels can aid in the identifica-
tion of whether any correlation exists among the data
attributes. In the “fl2000” dataset, we further verified
the relationships among the attributes of technology,
columns, undervote, and overvote. In the data, the
values of technology are not recorded as numbers, but
as words from the text set of “Optical”, “Votomatic”,
“Datavote”, “Lever”, and “Hand”. Therefore, this at-
tribute was not visualized in Fig. 6(a) and 6(b), whereas
in Fig. 6(c), we used the type of technology as data la-
bel and assigned different colors to the labels with dif-
ferent values of columns. A red label indicates that the
ballot listed the presidential candidates in 1 column,
whereas the green label indicates that the presidential
candidates were spread over 2 columns. The blue rect-
angular area in Fig. 6(c) is enlarged in Fig. 7(b). We
easily note that all the counties with a high number of
undervote or overvote must use the “Votomatic” type
of voting machine, and the counties with the highest
and the second highest number of overvote both have
the “2” columns in the ballot and the “Votomatic” type
of voting machine. This experiment demonstrates that
our labeling method can not only show detailed infor-
mation in the data, but can also aid in the identification
of correlations among data attributes.

4.3 Cars
We also tested our algorithm on a widely used “cars”
dataset [2] (See Fig. 8(a)). In Fig. 8(b), the car informa-
tion dataset with 8 variables and 392 items is visualized
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with car names as data labels. Our result successfully
shows the labels and line directions of several overlap-
ping lines. However, numerous lines remain overlap-
ping. Our method searches for a global optimized lay-
out, but the high line denseness in local areas and the
limited screen space causes our method fail to guarantee
the local optimization of visible labels. Therefore, for
large datasets, users can apply the proposed approach
to a subset of data while using other overview methods
simultaneously. We further tested the effectiveness of
our method when it is used together with other tech-
niques. In Fig. 8(c), the upper layer is the labeling
result highlighting a subset of data items whose value
of year attribute is 70, and the background layer is the
coloring curves generated by the visual clustering tech-
nique [33]. The origins of cars (i.e., American, Euro-
pean, Japanese) are used as data labels, and the cylin-
der number of cars are represented by the color of labels.
In the upper layer, the moving directions of labels and
the colors show that the attributes mpg and cylinders
have an inverse correlation in this subset. However, the
inverse correlation does not exist in the whole dataset,
because several red lines do not maintain a consistent
slope angle in the background layer. Three interesting
areas in Fig. 8(c) are enlarged in Fig. 9. We can notice
that in 1970 all the types of cars with 8 or 6 cylin-
ders were made in American (See Fig. 9(a) and (b)).
Meanwhile, five types of European cars and two types
of Japanese cars have 4 cylinders (See Fig. 9(c)). This
experiment demonstrates that our method can be used
with other methods, and can successfully reveal detailed
information and correlations among attributes for large
datasets.

All our results were generated on a T410 Lenovo note-
book computer with Intel Core i5 Duo 2.53 GHz CPUs
and 4GB memory. The computation times of our la-
beling results for the datasets used in Fig. 5, Fig. 6,
Fig. 8(b), and Fig. 8(c) are 4.7s, 19.5s, 986s, and 3.2s,
respectively.

5. DISCUSSIONS
From the experiments, we can see that our approach has
some clear advantages. Our method can successfully
disperse several overlapping or nearby lines, and it can
draw their clear labels to help users trace the polylines.
Compared with the NP-hard problem of drawing labels
alongside the lines, our method is simple because it uses
a linear system to find the optimized line arrangement.
The level of line dispersing can be controlled by different
energy coefficients. Our default setting of cattaction =
0.1, crepulsion = 6, and cothers = 0 works well for most
datasets.

Our method is designed to show detailed information
for PCPs, so, it works well for small datasets without
too many overlapping lines. However, if an area with
very dense lines in a PCP exists, because of the lim-
ited screen space, showing all the line labels is theoreti-
cally impossible. In Fig. 6(b) and Fig. 8(b), we can see

that some lines are still overlapping. Therefore, users
are suggested to use our technique, together with other
overview methods, or just apply our technique to a sub-
set of data.

One major disadvantage of our method is that solving
the linear system may be time-consuming. lp solve [1],
which we used, has polynomial-time complexity. There-
fore, computing the optimized line layouts for very large
datasets may take minutes or hours. However, our
method can be a one-time preprocess step, and apply-
ing to only a small subset from the large datasets is
suggested.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a novel technique to
visualize parallel coordinates with data labels and to
use different labels to provide cues for the differenti-
ation of polylines. We exploit curved lines and adjust
their shapes according to an energy model to save space
for visible labels. The energy model consists of attrac-
tive forces designed to prevent curves with high curva-
ture and repulsive forces designed to disperse overlap-
ping lines or lines that are too close. The energy sys-
tem is minimized with a linear programming solver, and
the data labels are placed along the optimized curves.
Therefore, the polylines in parallel coordinates can be
easily traced on the basis of labels, and important la-
beling information is also revealed. Our approach is
suitable to be used together with other overview meth-
ods or to be applied to a subset of data.

In the future, we plan to investigate the effectiveness of
our labeling method through formal user studies. We
also plan to design some sophisticated interaction tools
for our system, such as brushing.
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