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Abstract—Dynamic network visualization has been a challenging research topic due to the visual and computational complexity

introduced by the extra time dimension. Existing solutions are usually good for overview and presentation tasks, but not for the

interactive analysis of a large dynamic network. We introduce in this paper a new approach which considers only the dynamic network

central to a focus node, also known as the egocentric dynamic network. Our major contribution is a novel 1.5D visualization design

which greatly reduces the visual complexity of the dynamic network without sacrificing the topological and temporal context central to

the focus node. In our design, the egocentric dynamic network is presented in a single static view, supporting rich analysis through user

interactions on both time and network. We propose a general framework for the 1.5D visualization approach, including the data

processing pipeline, the visualization algorithm design, and customized interaction methods. Finally, we demonstrate the effectiveness

of our approach on egocentric dynamic network analysis tasks, through case studies and a controlled user experiment comparing with

three baseline dynamic network visualization methods.

Index Terms—Graph visualization, 1.5D visualization, dynamic network, egocentric abstraction

Ç

1 INTRODUCTION

DYNAMIC networks are networks that exhibit time-vary-
ing relationships as well as node and edge attributes

that change over time. Important insights can be obtained
through the overview, browsing and analysis of a dynamic
network in the visual form. For example, in a telecom ser-
vice provider, domain experts routinely check the dynamic
communication network to validate the misbehavior of sus-
pected mobile spammers [1]. In an academic scenario, a
new researcher wants to study the dynamic collaboration
network of a visualization fellow to discover the most influ-
ential people in her recent research activities. Though
there are always analytical methods that can automatically
uncover specific features, the unique strength of the visuali-
zation method is to synthesize large amount of data and
reveal interesting patterns that warrant further analytical
investigation. On dynamic networks, the need for novel vis-
ualizations is more critical due to the heterogeneity in the
topology and temporal aspect of the network data [2], [3].

Historically, the visualization of large dynamic networks
is a well-known hard problem [4]. First, new visual designs
should probably be invented beyond the traditional node-
link graph representation [5], [6], [7], [8] to incorporate the
additional time dimension. Second, scalability issues of the

visualization must be considered as the size of a dynamic
network can increase significantly over time. Existing meth-
ods often introduce data reductions in the time dimension,
and snap together multiple temporal views into network
movies [2]; however the animation approach to display net-
work movies is shown to be ineffective for network analysis
tasks [9], [10]. Third, over the visualization design, the inter-
action methods to explore a dynamic network, e.g. filter and
drill-down to obtain local features, are extremely valuable
in the analysis process.

In this paper, unlike previous works that consider the
network structure in full scale, we target a subset of
dynamic network analysis tasks that take one network
node as the focus and require looking at only the
dynamic network central to the focus node, also known
as the egocentric dynamic network. According to the tax-
onomy of network visualization tasks [11], this work is
motivated by two types of low-level tasks frequently
observed on egocentric dynamic networks: 1) checking
the dynamic adjacencies between the focus node (aka the
ego) and non-focus nodes (aka the alters) over time,
including their strength, frequency, periodicity and direc-
tionality; 2) diagnosing the connectivity among non-focus
nodes with respect to their dynamic adjacencies to the
focus node, e.g. the dynamic community structure,
bridges and hubs among non-focus nodes. In contrast, the
method proposed here is not designed for the attribute-
based, overview and browsing tasks of the entire net-
work, though our method supports the overview and
browsing of the egocentric dynamic network.

In more detail, we propose a new visualization design,
namely the 1.5D dynamic network visualization (1.5D),
based on the egocentric data reduction of the dynamic net-
work (Section 3). As shown in Fig. 1, the key visual meta-
phors are the temporal trend glyph in the center to replace
the trivial representation of the focus node, and the glyph’s
affiliated multiple edges carrying temporal information. All
the other non-focus nodes and the edges among them
remain the same as those of a simple node-link graph. The
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resulting visualization inherits the intuitiveness of a graph
representation, while accommodating both topological and
temporal information in the traditional 2D view space.
Notably in this design, we encode “time” into one dimen-
sion of the view space (along the trend glyph) but do not
impose a strict layout mapping on non-focus nodes. In other
words, 1.5D freedom is provided for a visually aesthetic net-
work layout, hence the name of the approach. More descrip-
tion of the 1.5D design is given in Section 4.

Despite the conciseness of our design, it is nontrivial to
compute and accomplish a 1.5D visualization. In addition
to a preliminary version of this approach [12], we further
introduce three kinds of trend glyphs to be integrated into
the visualization, and we discuss their selection criteria. An
optimized, force-based algorithm is proposed to calculate
the layout for the egocentric dynamic network, along with
another radial layout model suitable for the larger event-
centric dynamic network. Several customized interactions
are introduced in the context of egocentric dynamic net-
work analysis tasks. We describe two case studies in Section
5 and report one controlled user experiment in Section 6
comparing the 1.5D approach to baseline dynamic network
visualization methods. The results on both objective task
performance and subjective user feedback show a clear
advantage of the 1.5D approach in the egocentric dynamic
network analysis scenario.

2 RELATED WORK

Traditionally, dynamic network visualization was studied
on the problem of incremental node-link graph drawing,
especially on specific types of graphs such as trees [13],
series-parallel graphs [14] and directed acyclic graphs [15].
In DynaDAG [15], the research problem was summarized
as how to maintain stability across consecutive views, i.e.,

preserving the user’s mental map [16], [17]. Two categories
of stable graph drawing algorithms had been developed. In
the first category were online drawing approaches [18], [19],
[20] which computed the graph layout of one time slot from
the layout of the previous time slot and the delta graph
change. In the second category were offline stable graph
drawing algorithms, which took all the graph sequences
along the timeline into consideration [21], [6], [22]. Mean-
while in SoNIA [5], two methods to display network
dynamics, i.e. the static flip book and the dynamic movie,
were proposed for the usage in different contexts.

While the above mentioned methods drew the dynamic
network in a 2D node-link representation, more versatile
visual metaphors had also been proposed in the literature.
Brandes and Corman described a method to unroll the
dynamic network into a 3D graph visualization [23]. Yi
et al. proposed TimeMatrix [24], which visualized the tem-
poral metrics of a dynamic network in the adjacency matrix
by incorporating the TimeCell glyph. Hao et al. applied
treemaps to visualize time-varying data over static hierar-
chies [25]. A similar hybrid approach combined the hierar-
chical tree layout with the timeline visualization to present
the dynamic hierarchical data [26]. TimeRadarTrees [27] is
another novel visual metaphor to visualize general dynamic
networks. Parallel Edge Splatting [28] introduced the paral-
lel coordinate design to the dynamic network visualization
problem. Farrugia et al. [29] studied the similar problem of
temporal ego network visualization. They proposed an
interesting tree-ring layout in which the time was encoded
into multiple concentric circles from the ego node. The alters
were replicated at each active time slot and placed equidis-
tantly on the ring. Compared to our 1.5D approach, the tree-
ring layout is more compact so that each temporal ego net-
work can be drawn as a motif to construct small multiples
for the visual comparison of different ego nodes. In contrast,
the 1.5D design requires more space, but is more intuitive
because of the non-replicated node-link graph metaphor.
Moreover, our design can better illustrate the network struc-
ture due to the 1.5D freedom on the layout. In this sense, the
1.5D approach is more suitable for the in-depth analysis of
one single egocentric dynamic network.

Scalability is another key issue in visualizing dynamic
networks. In the literature, only a few methods proposed to
visualize the large dynamic network in full scale under the
node-link representation. One exception was the small mul-
tiple display (SMD) [30, pp. 67-80] which juxtaposed net-
works at each time slot in the same view. Essentially a large
screen is required to dilute the visual complexity, which
limits their usage. In contrast, most other methods looked at
the data aspect and employed some kind of data reduction
to alleviate the visual complexity. Hadlak et al. gave a tax-
onomy of the data reduction method on dynamic network
visualizations [2]. The first class of methods considered the
time domain, either selecting a portion of time slots or
abstracting the time into aggregated slots. Only the network
of one single/aggregated time slot was drawn at each view.
Multiple views were snapped together into a network
movie and displayed by animations. The animation
approach [31], [32], [5] offered a pleasant viewing experi-
ence for the audience, but in general its effectiveness
was challenged in the recent research [33]. Experiments

Fig. 1. The dynamic short-message communication network central to a
mobile phone spammer. The spammer broadcasts messages in a con-
tinuous and constant rate, highly suspected of being the advertising
behavior. Each non-focus user receives only one message from the
spammer during the process, without any message sending to the
spammer or among the non-focus users.
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comparing the animation approach with the static multiple
displays [9], [10] revealed that users required more time to
understand the dynamic network with the animation
approach. The root cause of this slower performance was
ascribed to the large degree of node movements and target
separations during the animation [34]. The second class of
data reduction methods started with simplifying the net-
work structure. HiMap [35] clustered a large network hier-
archically and displayed only important nodes and edges
above a certain hierarchy. Van Ham and Perer proposed a
method to construct a sub-graph of the large network from
one or multiple nodes of interest [36]. However, very few
of the structure-based data reduction methods targeted
dynamic networks.

While the aforementioned methods focus on designing
visualizations to interpret dynamic networks, there are
fewer studies on improving their effectiveness for analyti-
cal tasks. The animation-based approaches were shown to
be inadequate for analysis purposes; most other works
managed to optimize the capability of static displays.
One class of methods kept the analysis requirement in
mind when designing visualizations. In [37], [38], tempo-
ral charts of network metrics (e.g., degree and size) were
plotted together with the network graph as coordinated
multiple views. Analysts can examine detailed network
structures and their high-level temporal trends simulta-
neously. On the comparison of dynamic networks along
the timeline, frameworks such as VisLink [39] can be
applied. Archambault proposed a useful method to
directly construct a hierarchy graph from the network dif-
ference [40]. This difference map approach was shown to
be effective for many dynamic network analysis tasks
[41]. Another class of methods introduced novel interac-
tions to facilitate specific dynamic network analysis tasks.
VisLink allowed manipulating (e.g., rotating) the 2D
plane hosting the network at each time slot to switch
among comparing visualizations. Federico et al. intro-
duced two kinds of highlight interactions [42]: one to fea-
ture the node trajectory on network layouts over time; the
other to help discover the node connectivity on all time
slots of the dynamic network. In in-situ visualization [2],
the user chose a base visualization at first to gain an over-
view of the dynamic network, and then selected one part
of the network to show details in another embedded visu-
alization. The embedding can be zoomed and filtered iter-
atively, and again displayed with another visualization.

3 DYNAMIC NETWORK PROCESSING

In this section, we describe the process used to transform the
general dynamic network data into a format suitable for the
1.5D visualization. The raw dynamic network is represented
by a time-varying graph G ¼ ðV;EÞ spanning a time period
½0; T Þ. The graph consists of a node (vertex) set V and an
edge (link) set E. Each node v 2 V (edge e 2 E) is associated
with a time set T ðvÞ (T ðeÞ), which defines the active time
period of the node (edge). An example is given in the top-
right part of Fig. 2. The time set can be composed of multiple
time intervals for continuous dynamic networks or multiple
time points for discrete dynamic networks. It is assumed
that the underlying graphG is simple, i.e., no multiple edges

between two different nodes and no loop edges. Both
directed/undirected and weighted/unweighted graphs are
allowed. For simplicity, we refer to an undirected and
unweighted graph in the description below.

3.1 Egocentric Dynamic Network

The egocentric dynamic network DðAÞ ¼ ðV ðAÞ; EðAÞÞ cen-
tral to the focus node A is defined by a discrete sub-graph
of G. Formally, DðAÞ is generated from G in two steps, as
illustrated in Fig. 2.

Slotting. The first step is to discretize the dynamic net-
work. Given an ordered time series ½t0; t1; . . . ; tk� where
t0 ¼ 0 and tk ¼ T , the slotted dynamic network graphs
GSðtiÞ ¼ ðVSðtiÞ; ESðtiÞÞ are computed by

VSðtiÞ ¼ fvjv 2 V ^ T ðvÞ \ ½ti; tiþ1Þ 6¼ ;g i ¼ 0; . . . ; k� 1 (1)

ESðtiÞ ¼ feje 2 E ^ T ðeÞ \ ½ti; tiþ1Þ 6¼ ;g i ¼ 0; . . . ; k� 1: (2)

Normally, the slotting of the dynamic network is defined
uniformly by setting the same interval on the time series.
Certain granularity and network complexity control can be
achieved by tuning the interval value, e.g. setting to a min-
ute, an hour or a day.

Extraction. The second step is to extract DðAÞ from the
discrete dynamic network. By definition, the corresponding
node set V ðAÞ is exactly the union of {A} and the nodes in V
adjacent to A. The edge set EðAÞ is a little different in that
each edge is replicated at each time slot in which it exists.
We denote the edge in EðAÞ by e ¼ ðv1; v2; tÞ where v1 and
v2 are two endpoints and t represents its time slot

V ðAÞ ¼ fAg [ fvjv 2 V ^ ðv;AÞ 2 Eg (3)

EðAÞ ¼ fðv1; v2; tÞjv1 2 V ðAÞ ^ v2 2 V ðAÞ
^ ðv1; v2Þ 2 ESðtÞg:

(4)

Fig. 2. An example of the egocentric dynamic network generation. The
raw dynamic network is first sliced into three time slots t0, t1 and t2. Ego-
centric graphs are then extracted and combined. The focus node A is
highlighted in red; the adjacent nodes to A and their edges are drawn in
pink. The edge label identifies the corresponding time slot.
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The resulting egocentric dynamic network DðAÞ is essen-
tially a multigraph in that there may exist multiple edges
between two endpoints, as shown in Fig. 2.

3.2 Event-Centric Dynamic Network

In an extension of the 1.5D visualization, we consider the
dynamic network central to a group of events with the same
type. This is done by inserting a node representing this
group of events as the focused node, which is further drawn
as the central trend glyph. For example, in a paper co-
authorship network, the papers in the same conference can
be grouped together as one event type. There will be one
edge between an author and the central event (conference)
if she published a paper on that. The edges between the
authors remain as the co-authorship relationship.

Formally, the raw dynamic network data is processed
into an event-centric graph DðGÞ where G denotes the event
type. Each single event in this type is represented by
EvtðG;c; tðcÞÞ, where c denotes the unique event ID, tðcÞ
denotes the event time. A node v involved in an event
EvtðG;c; tðcÞÞ is denoted by v � EvtðG;c; tðcÞÞ. DðGÞ is
generated in three steps where the last two steps largely fol-
low the process in Section 3.1. The first step is given below.

Insertion. On the input time-varying graph G, G is added
to the node set V as the focus node, which spans the entire
time period of G. For the edge set, edges are added from
every non-focus node in G to the focus node G. Each such
edge indicates that an event in the type of G involving a
non-focus node has happened. The graph insertion step is
defined by

V ¼ V [ fGg; T ðGÞ ¼ ½0; T Þ (5)

E ¼ E [ fðv;GÞjv 2 V ^ v 6¼ Gg;
T ðe ¼ ðv;GÞÞ ¼ ftðcÞjv � EvtðG;c; tðcÞÞg: (6)

4 1.5D VISUALIZATION

4.1 Design

An example of the proposed 1.5D visualization is given in
Fig. 3. The main idea is to introduce a temporal glyph to
represent the trend of the focus node. As a result, the multi-
ple edges between each non-focus node and the focus node
can be decoupled by design. The time information of each

of these edges is encoded by the location of the edge’s end-
point on the trend glyph, exactly at the brim of the corre-
sponding time slot. We call these edges time-dependent. On
the other hand, between the non-focus nodes, the multiple
edges are combined into a single edge in the view, which is
called time-independent. Basically the 1.5D design follows the
traditional network visualization paradigm with nodes and
straight-line edges, so that the visual network theme can be
easily identified by a user.

In Fig. 3, the graph illustrates a dynamic email network
of the focus node (person). The focus node is drawn in a ver-
tical glyph, showing the trend of email communications
(send + receive) of this person through a whole year.
The width of the trend at each monthly-slotted sub-glyph
encodes the number of emails in a particular month. The
non-focus nodes, which represent the contact persons
having email communications with the focus person, are
placed on either side of the central trend glyph. For exam-
ple, the non-focus node “Michelle” in the top-right part of
Fig. 3 connects to the focus node in four separate months.
The central trend glyph uses a stacked drawing to visualize
the ratio of send/receive in the personal email communica-
tions. The inner stack in dark blue indicates the number of
emails sent by the focus person in each month. Correspond-
ingly, the outer stack of the trend glyph in light blue indi-
cates the number of receives. In this graph, the majority of
the email communications of the focus person are inward.

On the edge coloring, unidirectional communications are
drawn in blue, while bidirectional communications are
drawn in orange. Edge thickness indicates the number of
emails. Upon mouse-hovering, the selected node (e.g., Van
Ham in Fig. 8a) is drawn in a red outline, and all the neigh-
boring nodes are drawn in pink outlines. The sending edges
of the selected node are drawn in green, and the receiving
edges are drawn in red. The corresponding time slots on the
trend glyph turn red for the receiving stack and green for
the sending stack.

Trend glyphs and selection criterion. We have implemented
three kinds of trend glyphs to represent the timeline of the
focus node, as listed in Fig. 4. Other visual encodings are

Fig. 3. 1.5D dynamic network visualization design. The data is synthe-
sized only for the illustration purpose.

Fig. 4. Alternatives for the focus node representation: (a) The vertical
double-sided trend. (b) The horizontal single-sided trend. (c) The spiral
glyph. In this case, each ring in the glyph corresponds to a day and each
sector (block) in a ring corresponds to an hour in a day. The filling of a
block indicates there is at least one activity happening at the focus node
in the corresponding hour. The brightness of the fill color encodes the
number of activities.
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also possible, e.g., the recursive pattern [43]. Our first design
is a double-sided trend glyph placed vertically (Fig. 4a).
This choice applies a symmetric design so that a non-focus
node can be placed on either side of the central glyph. The
layout space is utilized better, which allows us to accommo-
date more non-focus nodes in the view. Also, the temporal
network patterns of the non-focus node are better illustrated
in this design. It is especially helpful when the number of
time-independent edges among non-focus nodes is low.
However, an obvious drawback, the placement of non-focus
nodes on either side of the trend glyph can introduce unnec-
essary ambiguity in the data encoding. In some cases, the
crossings of the time-independent edge over the trend
glyph lead to a poor graph readability. On the other hand,
the single-sided trend glyph (Fig. 4b) employs a horizontal
design and lays out non-focus nodes only above the glyph.
This avoids edge crossings of the time-independent edge
with the trend glyph, however provides less flexibility to
maximize the overall graph readability. This design works
better in the scenario where the network is small in size but
complex in structure. In a third choice, a spiral glyph [44]
can be applied in the case where periodic patterns in the
focus node’s network activity are significant, as shown in
Fig. 4c, where the focus node’s timeline is drawn in a spiral
line. Each ring in the glyph can represent a month, a week,
or an hour, and in this graph, a day. Each sector (block) in
the ring corresponds to a finer granularity, e.g., in this
graph, an hour in a day. Each filled block indicates there are
network-related activities in this hour. The color brightness
of the filling encodes the number of such activities, the
darker the blue, the larger the number. Labels in the center
of the spiral glyph show the active period of the focus node
measured in days, and also mark the hour of each block on
the ring. Time-dependent edges are connected to the brim
of the outermost block in this design. Note that since the spi-
ral design occupies more space than the other two glyphs
when a longer time period is considered, it generally works
better for small egocentric graphs with periodic patterns.

4.2 Graph Layout

In this part, we describe the layout algorithm for the 1.5D
dynamic network visualization. Without loss of generality,
the trend glyph adopts the vertical double-sided design
throughout the algorithm description. The layouts with the
other two trend glyphs have little difference from the stan-
dard process. In a default setting, the vertical trend glyph is
reasonably placed at the center of the view space, partially
mapping the Y axis to the time dimension in the dynamic
network. The ultimate goal for the layout algorithm is to
place all the non-focus nodes in appropriate locations so
that both their temporal affinities to the focus node and the
topological characteristics of the dynamic network can be
revealed. We introduce two layout algorithms to serve the
smaller egocentric dynamic network and the larger event-
centric dynamic network respectively.

4.2.1 Force-Directed Layout Model

The egocentric dynamic network is generally small in size.
For example, though the friends/followers of an online SNS
user can reach a thousand or more, the number of users she

interacts with, is often much smaller (e.g., below a hun-
dred). We apply the classical force-directed layout model
[45] on the egocentric dynamic network, which can compute
an aesthetic layout for small graphs in real time.

There are three major challenges in directly applying the
force-directed model. First, the classical force-directed algo-
rithms assume an infinitely small size of the node, while in
the 1.5D visualization, the shape of the trend glyph in the
center is nontrivial, which can lead to a severe node over-
lapping problem. Second, the 1.5D graph is essentially a
multi-graph, due to the multiple edges between each non-
focus node and the focus node. Given the nontrivial shape
of the focus node, the standard force-directed algorithm can
not take the multiple edges into account in the layout pro-
cess. Third, as the time is mapped to the Y-axis of the trend
glyph (vertical setting), there is a desire for non-focus nodes
to follow this visual mapping. In this paper, we propose a
customized force-directed model for the 1.5D graph layout.
It works in three steps:

Split. We first virtually split the focus node A by the pre-
defined time slot into several sub-nodes fp0; p1; . . . ; pk�1g, as
shown in Fig. 5. Then each time-dependent edge between
the non-focus node and the focus node is decoupled into
several time-independent edges between the non-focus
node and the sub-nodes, making the resulting graph a sim-
ple graph. Another gain is that each sub-node has a much
smaller size, favoring the force-directed layout assumption.
The new graph after the split is denoted as L ¼ ðVL;ELÞ.

Stable layout. Over the simple graph after the split, we
apply a stable layout algorithm to compute the node place-
ment. In the literature, most force-directed algorithms [45],
[46] define energy functions over the graph and solve the
energy minimization problem to compute the final opti-
mized layout, which maximizes the layout aesthetic. To
introduce the temporal information to the dynamic graph
layout, we extend from the classical Kamada-Kawai (KK)
layout model [46]. Our energy function consists of two

Fig. 5. An illustration of the proposed stable force-directed layout model
with the sub-node split and re-projection processes.
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terms. The first term implements the KK layout’s energy
function and the second term works as a stable function to
encode the temporal constraint of the non-focus nodes.

Formally, the energy function is written as

F ¼ ð1� aÞ
Xn�1

i¼1

Xn

j¼iþ1

vijðkXi �Xjk � dijÞ2

þ ðn� 1Þa
2

Xn

i¼1

mikXi �X
0
ik2;

(7)

where Xi denotes the position of the ith node in graph L, dij
defines the optimal distance between the ith node and the
jth node, vij and mi are the parameters controlling the

weight of each node (pair), X
0
i denotes the desired position

of the ith node according to its temporal information, and a

controls the degree of stability.
In the vertical setting, the position of the sub-nodes split

from the focus node are fixed at the center of their sub-
glyphs. We remove irrelevant terms from the energy func-
tion by setting parameters as (8), which helps to alleviate
the negative effect of fixed-nodes on the layout aesthetics.
vij and mi are set according to the classical model [47]. By
default, a is set to 0.5 to strike a balance between the tempo-
ral and topology graph aesthetics. Users can adjust a online
to favor a different layout strategy. For example, setting
a ¼ 1 fixes the non-focus nodes at their desired positions by
the temporal affinity, while setting a ¼ 0 only considers
their topology aesthetics.

vij ¼
0 ith and jth nodes are both sub-nodes of A

d�2
ij otherwise;

(

mi ¼
0 ith node is sub-node ofA

kX0
i �X0 k�2 otherwise;

�

(8)

whereX0 ¼ ðx; yÞ is the center of the trend glyph.
The desired position of each non-focus node (X

0
i) is set on

the circumference of a circle centered at the trend glyph. For
the unweighted graph L, the angular position of a non-focus
node is computed from the average time slot of all the inci-
dent edges connecting to the focus node A. The radius is
inversely proportional to the total number of these edges to

A. Formally, for a non-focus node vi in graph L;X
0
i ¼ ðxi; yiÞ

is computed by

xi ¼ xþ synðviÞr cos u;
yi ¼ yþ r sin u;

r ¼ r0
kfjjðvi; pjÞ 2 ELgk ;

u ¼ u0 þ ðuk�1 � u0Þðsi � t0Þ
tk�1 � t0

;

si ¼ tj; 8j; ðvi; pjÞ 2 EL;

(9)

where ðx; yÞ is the center of the trend glyph, synðviÞ is the
signal function indicating whether the non-focus node is
placed on the left (�1) or on the right (1) of the trend glyph,
r0 denotes the maximal node distance from the center, and
u0 and uk�1 denote two bounding angular positions from the
center, by default set to p

2 and �p
2.

We apply a modified version of the stress majorization
solver [47] to compute the optimization result of the above
energy function. To decide on which side the non-focus
node is placed, we implement a uniform graph bisection
algorithm to partition the non-focus node set. The case with
weighted graphs is handled similarly, except that edge
weights are added to the computation in (9).

Re-projection. After the layout is computed, it is possible
that some non-focus nodes lie in the contour of the central
trend glyph. We introduce a linear re-projection on the X
coordinate of non-focus nodes to alleviate this effect. For-
mally, their new X coordinates are calculated as below

x�
i ¼

W � W�C
W ðW � xiÞ W=2 � xi � W;

W�C
W xi 0 � xi < W=2;

�
(10)

where xi denotes the X coordinate before the re-projection,
W is the width of the layout space, C is the maximal width
of the trend glyph. Fig. 5 illustrates this process.

4.2.2 Radial Layout Model

For the event-centric dynamic networks, the event and the
resulting network can involve thousands of entities, e.g.,
authors in a conference series. In this size, the force-directed
layout will be quite slow. Although there are approxima-
tion-based multi-level layout algorithms for large graphs
[48], the final drawing is often too cluttered to be under-
stood, especially for the 1.5D visualization having many
edge crossings on the central trend glyph. The event-centric
edge bundling is proposed to alleviate this effect, as shown
in Fig. 6 and described in Section 4.3. By edge bundling,
time-independent edges which connect two non-focus
nodes are not drawn in straight lines, and topological adja-
cencies among non-focus nodes are weakened to favor their
temporal affinities to the focus node. Motivated by this
observation, we propose a radial layout model which places

Fig. 6. 1.5D visualization of the InfoVis co-authorship network 1995 �
2009. The left part of the graph shows the authors who publish InfoVis
papers in multiple years; the right part shows the authors who present in
only one year (maybe multiple papers). Both time-dependent and time-
independent edges are drawn. Event-centric edge bundling is applied.
The node representing “Carpendale” is highlighted.
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the non-focus nodes rapidly for large event-centric dynamic
networks. The layout result is shown in Fig. 6.

The radial model determines the graph layout in a polar
coordinate system. The position of the non-focus nodes are
computed only from their temporal affinity to the focus
node. The center of the polar coordinate is set to the center
of the trend glyph. The radius of each non-focus node is
inversely proportional to the number of edges connecting to
the focus node. The computation of a non-focus node’s
angular position involves three steps:

Partition. All the non-focus nodes are divided into two
subsets and placed in the left and right side of the central
trend glyph respectively. The default partition method sep-
arates the nodes having only one edge connecting to the
focus node from the other nodes having multiple edges to
the focus node. Other partition methods can also be applied
for customized comparison purposes.

Sort. The average time affinity of each non-focus node to
the focus node, denoted as si, is calculated by (9). Then for
each subset generated in the first step, their non-focus nodes
are sorted according to this average time affinity. The node
rank is assigned starting from zero.

Assign. The non-focus node vi with rank ri in subset S is
assigned the angular position ui by

ui ¼ u0 þ riðuk�1 � u0Þ
kSk � 1

: (11)

4.3 User Interaction for Analysis

We design a few customized interactions for the analysis of
egocentric dynamic networks by the 1.5D visualization:

Timeline navigation. In our design, the dynamic network
is processed and visualized by pre-defined time slots.
Switching to a new slotting granularity will lead to a
quite different view of the same network. Inspired by the

geometric zoom-in/zoom-out operation, we introduce
the timeline navigation interaction which allows a user to
select an interesting timeline period, zoom-in to show the
network with a finer time granularity for the detailed
analysis, and/or zoom-out to a higher-level view for the
overview purpose.

Fig. 7 gives an example of this interaction. In Fig. 7a, the
network is slotted by month; however no temporal trend is
visible as the time span is only one-month. Then the user
zooms to the day granularity (Fig. 7b), and it can be quickly
discovered that the behavior of the focus node is divided
into two periods: April 1st and April 3rd � 4th. As he pro-
ceeds to select the day of April 1st and zooms to the minute
granularity (Fig. 7c), the pattern of a constant-rate burst in
three minutes is located.

Egocentric network navigation. A major trade-off of the
1.5D design is to show only the egocentric dynamic net-
work, rather than the entire network. Moreover, the tempo-
ral patterns associated with the time-independent edges
among the non-focus nodes can not be revealed. We miti-
gate these limitations by allowing the user to navigate
across many egocentric networks through a simple interac-
tion. Upon a double-click of one non-focus node, the
dynamic network view will switch to a new network central
to the clicked node, as illustrated in Fig. 8.

Event-centric edge bundling. In the 1.5D design, the time-
independent edges will sometimes pass through the cen-
tral trend glyph, which can introduce significant visual
clutters. On the event-centric dynamic networks, each
time-independent edge is associated with a few events
happening at particular time slots. We can deliberately
bundle all the edges on the same event together by letting
them go through the center of the trend glyph at the
event’s time slot. When a user hovers one non-focus node
for its connections, its incident edges bundled at the same
time slot of the trend glyph are decoupled into different
events to reflect the details. This is called the event-centric
edge bundling. In an example of the InfoVis co-author-
ship network, Fig. 6 shows the result after the bundling.
The overall visual clutter is alleviated. Carpendale’s con-
nection patterns are highlighted in detail. She published
nine papers with 13 co-authors during the history of the
InfoVis conference. Note that by the event-centric bun-
dling, the time-dependent and time-independent edges
will overlap with each other. Our design differentiates

Fig. 7. 1.5D network visualization in different time granularities:
(a) slotted by month, the network contains one-month’s data;
(b) showing the separate days in a month; (c) drilling down to a few
minutes of April 1st, 2009.

Fig. 8. Egocentric network navigation in the InfoVis co-authorship net-
work: (a) the network central to Van Wijk, the node for Van Ham is
hovered; (b) switch to the network central to Van Ham by double-clicking
the node.
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them by the edge coloring. As shown in Fig. 6, upon
mouse hovering a node, the first-half segment of its time-
independent edge, which is also a full time-dependent
edge, is drawn in deep blue; while the second half seg-
ment of this time-independent edge is drawn in green
and red, according to the priority of the target node over
the hovered node on the event.

5 CASE STUDIES

We present two case studies covering the two targeted task
scenarios for the 1.5D visualization: 1) the dynamic adja-
cency between the focus node and non-focus nodes; 2)
the connectivity of non-focus nodes with respect to their
dynamic adjacencies to the focus node.

5.1 Telecommunication Network

In the first case, we visualize the telecommunication net-
work collected by a service provider. As shown in Fig. 9,
each node in the network, as well as the central trend glyph,
represents one mobile phone user. The directed edges
among them indicate short message communications
(Fig. 9c). The resulting network is essentially a dynamic
social network in the time period of the data set. Our previ-
ous work has developed a learning-based system [1] which
detects mobile users who spam, based on the temporal and
topological features of the social network. In the real usage,
it is important for the service provider to evaluate the accu-
racy of the system. In case the system has wrong classifica-
tions, the provider needs to find root causes. Even if the
system is shown to be accurate in most time, there is a need
to prepare a summary of the spamming behavior, prefera-
bly in the visual form.

We invited Adam, an analyst from the telecom service
provider, to use our visual tool to check the learning-based
spammer/non-spammer classification results. He started
by selecting one spammer in the list and accessing its ego-
centric dynamic network. As in Fig. 9a, the network slotted
by month showed up a star-like pattern where the sus-
pected spammer sent out only one message to quite a few
users without receiving any messages from them. Mean-
while, there was no communication among neighbors of the
spammer, a situation which indicated an extremely abnor-
mal social network. These observations corresponded to the
features applied in the spammer classifier: high outbound
degree but low inbound degree, low average outbound

edge weight, high sending/receiving ratio, and low cluster-
ing coefficient. Further, Adam drilled down to more details
by changing the slotting granularity to minute, as shown in
Fig. 9b. The temporal patterns in the spammer’s behavior
were located. The spammer tended to send messages out in
a constant rate within a short time span. In this case, nine
messages were sent per minute for 12 minutes. There was
no user who communicates with the spammer in more than
one time slots. This corresponded to the temporal feature
applied in the classifier: the long-term bursty and short-
term smooth sending rates.

In his second trial, one non-spammer classified by the
system was selected, as shown in Fig. 9c with the egocentric
network slotted by day. The orange edge indicated bidirec-
tional communications, and the edge thickness displayed
the number of messages on the edge (also drawn as the
edge label). In this view, opposite patterns to the spammer’s
network were discovered: between the non-spammer and
non-focus users, there were both inbound/outbound and
bidirectional edges; the number of messages exchanged
was larger than one in many cases; communications were
found among non-focus users; there were several users who
talked to the non-spammer in multiple time slots, and the
sending/receiving trend of the non-spammer had no signif-
icant temporal pattern. Drilling-down to the hour granular-
ity, as shown in Fig. 9d, more details were revealed.
Although there were few high-level patterns to discover in
this scale, more clues can be found in personal communica-
tions. For example, some had a double-handshake like con-
tact with the central user within an hour and some others
received a lot of messages continuously without replying.
This is highly useful for scenarios such as crime network
analyses.

5.2 Co-Authorship Network in the
Visualization Community

In this part, we present another case study on the analysis of
paper co-authorship dynamic networks in the visualization
community. The data set is extracted from the ArnetMiner
database [49]. It contains all the 9,557 papers of nine major
visualization conferences and journals, including SciVis, Info-
Vis, VAST, EuroVis, PacificVis, TVCG, CGF, IV journal and
CG&A, from 1982 to Jan. 2013. The co-authorship network is
generated by adding one directed edge between any two
authors of the same paper, from the lower-ranked to the
higher-ranked author. This sums up to a network of 11,016

Fig. 9. 1.5D dynamic network visualization in a telecommunication network scenario: (a) a typical spammer behavior slotted by month; (b) spammer
slotted by minute; (c) a typical non-spammer behavior slotted by day; (d) Non-spammer slotted by hour.
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author nodes and 40,839 co-authorship edges. Some tags are
attached to the co-authorship edges according to the topic of
the corresponding paper (e.g. “network visualization”). This
is done by matching the paper title, index terms and abstract
with relevant keywords and manually double-checking all
the matched papers for the final classification. In visualiza-
tion, we apply the horizontal single-sided trend glyph design.
In most cases, we mute the time-dependent edges in grey
(except Fig. 11 with a small network), so that the network
structure of non-focus nodes can be better perceived.

Jane, a junior visualization researcher, helped us in eval-
uating the 1.5D visualization tool. As a newcomer to the
visualization community, Jane first selected Arie E. Kauf-
man, the prestigious fellow on scientific visualization, to
study his collaboration history in this field. The initial view
of Kaufman’s egocentric dynamic network was a bit clut-
tered because of his 104 co-authors in history. Jane decided
to apply the node filter in our tool to leave only his top 30
co-authors who published at least three papers together
with Kaufman. In Fig. 10a, Jane found that Kaufman’s top
co-authors were naturally divided into two disconnected
components (i.e. network community) over time. The com-
munity on the left connected to Kaufman mainly before
2003, as indicated by the horizontal position of these non-
focus nodes and time-dependent edges (mouse hover to
access a better view). The community on the right worked
with Kaufman mainly after 2003. She then drilled down to
the recent ten years after 2003, which was displayed in
Fig. 10b. She found that the most influential author in

Kaufman’s recent egocentric dynamic network was Klaus
Mueller, a professor on visualization at the same depart-
ment. Notably, Mueller’s co-authorship with Kaufman dis-
tributed broadly over time and he virtually collaborated
with most of Kaufman’s top co-authors in this time period.

In the next trial, Jane conducted the same analysis on Ben
Shneiderman, the well-known InfoVis fellow. As an over-
view, the tool displayed a full dynamic network visualiza-
tion egocentric to Shneiderman (Fig. 11a). He published 26
visualization papers and had 46 co-authors during 22 years.
From the graph, Jane quickly found that Shneiderman

Fig. 10. 1.5D visualization of Arie E. Kaufman and his co-authors in the
visualization community: (a) the egocentric dynamic network with his top
30 co-authors; (b) the top influencer in the recent 10 years.

Fig. 11. 1.5D visualization of Ben Shneiderman and his co-authors in
the visualization community: (a) a full egocentric dynamic network; (b)
after filtering out one-time co-authors; (c) leave only the top 20 produc-
tive co-authors.
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became more active in the field from 2003. Two thirds of his
co-authors were connected to the same component (commu-
nity), and the other one third were isolated from the main
community, who might be doing independent research
with Shneiderman. Jane further studied the connection pat-
terns between Shneiderman and his co-authors using our
tool. She filtered out the one-time co-authors who wrote
only one paper with Shneiderman. The result is shown in
Fig. 11b. It is clear that only a few people co-authored at
least two papers with Shneiderman. Using another filter,
Jane could create an egocentric dynamic network of Shnei-
derman and his top 20 productive co-authors (Fig. 11c),
according to their number of papers in the visualization
community. From Figs. 11a and 11c, Jane found that
Plaisant, Stasko and Wong stood at the center of
Shneiderman’s egocentric dynamic network and connected
a few local communities together.

Different from the above cases that look at the dynamic
network central to one node (a mobile phone user or an
paper author), we also apply the 1.5D visualization to
event-centric dynamic networks. As Jane was very inter-
ested to the network visualization research, she selected this
topic as the central event, which included 301 papers classi-
fied in our data pre-processing stage. In Fig. 12, the network
was organized with respect to this research topic, drawn as
the single-sided horizontal trend glyph in the bottom. She
learned that this field was growing steadily, with most of
papers published after 2000. The non-focus nodes, which
represented the authors ever published on this topic, con-
nected to the focus node (the topic) at each paper publica-
tion year. The edges among these authors still indicated the
co-authorship relationship. Because there were 651 authors
who ever published network visualization papers, Jane
applied a filter to show only the authors with at least five
such papers, which left 35 authors in Fig. 12. Most of these
productive authors were connected into one single compo-
nent, showing the close tie in this research field. At the cen-
ter of this egocentric dynamic network, Jane found a few
influential authors, notably Jack Van Wijk and Jean-Daniel
Fekete (highlighted in Fig. 12), who connected several local
communities together and also published frequently in the
recent decade.

6 USER EVALUATION

We conducted a controlled user experiment to evaluate the
performance of the 1.5D approach (1.5D Vis) in the context
of the egocentric dynamic network analysis scenario. Our
approach was compared with two baseline dynamic net-
work visualization methods: small multiple display,
dynamic network movie (Movie); as well as the static visu-
alization aggregating the dynamic network over time
(Static). Each method was implemented in a separate tool
with a similar visual design, as shown in Fig. 13. In the
Movie approach, the user was required to control the time-
line to navigate dynamic networks. Auto-play is disabled
because it is hard to select a fair animation speed for com-
parison. In all the tools, it is not allowed to switch the focus
node or apply any filters.

Participant and apparatus. Twelve participants were
recruited for the experiment. Eight were novices in the
network visualization, three had experience, and another
one was an expert. All the experiments were carried out
in the same laptop workstation with a 17” widescreen
LCD and a high performance graphics card. A 800 � 800
window size was set for all the visualization tools, except
for SMD which used a smaller 400 � 400 window size
for each timeslot (� 2� 3 timeslots) or 200 � 200 window
size (� 4� 6 timeslots).

Experiment design. Participants were asked to complete
several tasks with each visualization method, and then
answered corresponding questions. We measured their
accuracy and performance time in completing each task.
Participants also responded to a quantitative questionnaire
regarding their experience in using each visualization. The
experiment followed a within-subject design: each user
completed one trail per task (“T1 � T4 or T5 � T8” +
“Q1 � Q2”) � visualization method (“1.5D Vis”, “SMD”,
“Movie”, “Static”). To obtain independence among results
from the same user, we introduced four data sets so that
each participant worked on tasks of each visualization
method with a different data set. We applied a Latin square
design that counterbalanced both learning and ordering
effects. On each participant’s turn, a training session was
held before using each visualization. The session included
readings of a half-page material on a paper describing the
visualization, a short oral instruction from the organizer,
and a trial of the tool with an irrelevant sample data to
understand the basic visual encodings and interactions. The
participant was told to complete each task in best-effort and
wrote down their answers on paper.

Data and task. Four data sets were used in the experi-
ment. The first two were egocentric short message com-
munication networks from the first case study: one was
the network central to a suspected spammer (12 time-
slots by minute and 109 nodes in total); the other was
the network central to a typical non-spammer (five time-
slots by day and 16 nodes in total). Four egocentric
dynamic network analysis tasks were designed on the
first two data sets, as listed below. T1 and T2 were used
to examine the performance involving topological fea-
tures of the egocentric dynamic network. T3 and T4
were used to evaluate the tasks further combining tem-
poral features of the network. On each task, six

Fig. 12. 1.5D co-authorship network visualization central to the “network
visualization” topic having 301 papers. The top authors with at least five
network visualization papers are shown. Two key influencers in this topic
are identified and highlight in the graph.
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candidate answers were provided including one “can not
answer” option.

T1: Estimate the number of unique non-focus users who ever
SEND short messages to the focus user.

T2: Estimate the number of unique connections among non-
focus users.

T3: Among all the time slots, find the time slot when the focus
user connects to (sends to or receives from) a maximal number of
non-focus users.

T4: Estimate the number of non-focus users who connect to the
focus user in more than one time slots.

The other two data sets were co-authorship dynamic
networks in the visualization community. One was
extracted from the InfoVis conference publications from
1995 to 2009 (15 timeslots by year and 674 nodes in total).
The other was extracted from the VAST publications from
2006 to 2009 (four timeslots by year and 298 nodes in total,
see Fig. 13). Four similar tasks were designed.

T5: Find the researcher that publishes the most InfoVis
(VAST) papers.

T6: Find the researcher that co-authors the most InfoVis
(VAST) papers with Frank Van Ham (J. Yang).

T7: Find the researcher that co-authors the most InfoVis
(VAST) papers with Frank Van Ham (J. Yang) in the years
2005 � 2009 (2007).

T8: Find the year in which the InfoVis (VAST) conference has
the most (least) unique paper authors.

Two subjective questions were asked to rate each visuali-
zation, immediately after a participant completed all the
four tasks. Answers were selected from a 1 � 7 Likert scale.

Q1: How much does this visualization help you in completing
the tasks and finding the correct answers?

Q2: How much do you like the experience using this
visualization?

In the first two smaller data sets, the force-directed layout
model was applied (Section 4.2.1); in the other two data sets,
the radial layout model was applied (Section 4.2.2).

Result and analysis. We collected 288 data entries in total,
each corresponding to one task question completed by a
user. Statistical analysis was conducted on the effect of alter-
native visualization methods over the measure of task accu-
racy, completion time and subjective rating. The choice of
data set and task were considered as contributing factors.
The significant level was set at 0.05 throughout the analysis.
We also compared the performance difference between
non-temporal and temporal tasks. On non-temporal tasks

(T1/T2/T5/T6), users can complete the study without
accessing the dynamics of the egocentric connection pattern
over time. In contrast, on temporal tasks (T3/T4/T7/T8),
users must take connection dynamics into consideration.
Because all the users could not answer temporal tasks with
the static visualization by design (Fig. 14a), we avoided
comparing the Static approach on temporal tasks and sub-
jective ratings.

Task accuracy. We translated task answers into binary
accuracy variables, either true or false, by comparing to
ground-truth answers. “Can not answer” choice is classified
into false. We conducted binary logistic regressions to
capture the Boolean value of the accuracy. The choice of visu-
alization, data set and task were used as independent varia-
bles, and the binary accuracy variable was used as the
dependent variable. Results show that the contribution of
the visualizationmethod to the task accuracy variation is sta-
tistically significant (p < :005). Compared to the 1.5D Vis, the
Movie approach decreases the likelihood (odds) of correctly
answering each task to 17.1 percents of the 1.5D Vis (95% CI
¼ [5.6, 52], p < :005), controlling for differences in data set
and task. Similarly, the SMD approach decreases this likeli-
hood (odds) to 15.3 percents of the 1.5D Vis (95% CI ¼ [5,
46.7], p < :005). The goodness of fit of this logistic regression
model is 0.361 (Nagelkerke R Square). The raw task accuracy
distribution in Fig. 14a indicates the same result: the 1.5D Vis
approach receives the lowest overall error rate (7/48) than
both the Movie approach (20/48) and the SMD approach
(21/48). In the split view, the 1.5DVis again receives the low-
est error rate on non-temporal tasks (4/24), close to the Static
approach (5/24) and much better than Movie (13/24) and
SMD approaches (10/24). On temporal tasks, the result is
similar: the 1.5D Vis has a much lower error rate (3/24) than
Movie (7/24) and SMD approaches (11/24).

Task completion time. We applied the analysis of variance
(ANOVA) test to study the impact of visualization, data set
and task choice on the task completion time. Because of our
Latin square study design, we can not use the repeated-mea-
sure ANOVA test to partition out the variability of
individual participants. Instead, we applied a three-way
ANOVA model, in which the numerical task completion
time was used as the dependent variable, the visualization,
data set, and task choicewere used as three independent var-
iables. Only main effect on each factor was modeled, high-
order interactions among three factors were not captured.
We validated both the normality (p > :1 in Shapiro-Wilk

Fig. 13. The interface of 1.5D Vis and three alternative dynamic network visualization methods. The data set is the co-authorship network of VAST
conference from 2006 to 2009. The star icon indicates “J. Yang” who is a relevant subject in the task questions.
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test) and homogeneity of variance (p > :05 in Levene’s test)
assumptions on the dependent variable before conducting
the ANOVA test. Results show that, with three-way
ANOVA, there are significant main effects of the visualiza-
tion method (F ð2; 131Þ ¼ 16:3; p < :001) and the task choice
(F ð6; 131Þ ¼ 5:45; p < :001) on the task completion time.
There is no significant main effect of the data set choice on
the task completion time. A Tukey’s post-hoc comparison
among different visualization groups indicates that the 1.5D
Vis group (M ¼ 55.0, 95% CI ¼ [38.4, 71.7]) leads to signifi-
cantly shorter task completion times than the Movie group
(M ¼ 123.3, 95% CI ¼ [106.5, 140.2]), p < :001, and the SMD
group (M ¼ 85.6, 95% CI ¼ [69.0, 102.3]), p < :05. The SMD
group also has significantly shorter task completion times
than the Movie group, p < :01, which is coherent with previ-
ous study results on general dynamic networks [33]. The
raw task completion time shown in Fig. 14b indicates the
same comparative result on both non-temporal and tempo-
ral tasks. On the non-temporal tasks only, the difference
between the 1.5D Vis group (M ¼ 56.4, 95% CI ¼ [38.1, 74.7])
and the Static group (M ¼ 62.4, 95% CI ¼ [43.8, 81.0]) is not
significant.

Here we should note that, during the experiment we did
not distinguish the time to read the question and write-
down the answer from the task completion time. Therefore,
the task completion time measure may not be exactly repre-
sentative to account for the technique differences, though in
general participant’s difference in reading and writing
speed does not vary much when they are told to work in
best-effort on short, simple tasks.

Subjective feedback. We analyzed participant’s subjective
ratings by the Kruskal-Wallis test, which does not require a
normality assumption of the observed data. The dependent
variable was set to the 7-scale Likert rating from Q1/Q2, the
independent variable was set to the visualization method
and the data set separately (Kruskal-Wallis test allows only
one independent variable in each time). Results show that
there are statistically significant differences among visuali-
zation groups (Hð2Þ ¼ 11:0; p < 0:005) on the subjective rat-
ing of Q1. The mean rank value is 26.5 for 1.5D Vis, 14.1 for
Movie, and 14.9 for SMD (the rank value has a range of 1 to
36 from 36 feedbacks on three visualization groups). On the
rating of Q2, there are also significant differences among
visualization groups (Hð2Þ ¼ 8:48; p < 0:05). The mean rank
is 25.5 for 1.5D Vis, 14.6 for Movie, and 15.3 for SMD. Fol-
low-up Mann-Whitney tests were conducted to evaluate the

pairwise difference among visualization groups. Results
show that the subjective rating of the 1.5D Vis is signifi-
cantly higher than the rating of the Movie approach, on
both Q1 (U ¼ 23:0; p < :005) and Q2 (U ¼ 27:5; p < :01). Sim-
ilarly, the subjective rating of the 1.5D Vis is significantly
higher than the rating of the SMD approach, on both Q1
(U ¼ 24:5; p < :01) and Q2 (U ¼ 32:0; p < :05).

Discussion. From the above analysis, we can summarize
that on both non-temporal and temporal tasks, the 1.5D
approach gains an advantage over two baseline dynamic
network visualization methods (the self-controlled dynamic
network movie and the small multiple display) by higher
task accuracies, shorter task completion times, and better
subjective ratings from participants. On non-temporal tasks
only, the performance of the 1.5D approach is close to that
of the static visualization aggregating the dynamic network
over time. We caution that our result should be taken on the
egocentric dynamic network analysis scenario only, and we
haven’t compared it with various special-purpose network
visualization tools.

7 CONCLUSION

In this paper, we propose a general framework, namely the
1.5D visualization, for displaying and analyzing egocentric
dynamic networks. Through formal case and user studies,
we show that the 1.5D approach can effectively guide a user
in the analysis process of egocentric dynamic networks,
notably by optimizing low-level tasks such as analyzing
egocentric dynamic adjacencies and egocentric network
structures. The success of our approach can be attributed to
three key innovations: the egocentric dynamic network
abstraction that reduces the network complexity for a better
human perception; the 1.5D visual metaphor with a variety
of trend glyphs that reveal both interesting temporal pat-
terns and topological egocentric network features; and vari-
ous interaction methods that allow temporal and network
navigation beyond the basic single view representation.
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