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Visual Analytics in Urban Computing:
An Overview

Abstract—Nowadays, various data collected in urban context provide unprecedented opportunities for building a smarter city through
urban computing. However, due to heterogeneity, high complexity and large volumes of these urban data, analyzing them is not an
easy task, which often requires integrating human perception in analytical process, triggering a broad use of visualization. In this
survey, we first summarize frequently used data types in urban visual analytics, and then elaborate on existing visualization techniques
for time, locations and other properties of urban data. Furthermore, we discuss how visualization can be combined with automated
analytical approaches. Existing work on urban visual analytics is categorized into two classes based on different outputs of such
combinations: 1) For data exploration and pattern interpretation, we describe representative visual analytics tools designed for better
insights of different types of urban data. 2) For visual learning, we discuss how visualization can help in three major steps of automated
analytical approaches (i.e., cohort construction; feature selection & model construction; result evaluation & tuning) for a more effective
machine learning or data mining process, leading to sort of artificial intelligence, such as a classifier, a predictor or a regression model.

Finally, we outlook the future of urban visual analytics, and conclude the survey with potential research directions.

Index Terms—Urban computing, visual analytics, visualization, visual learning, spatio-temporal, multivariate

1 INTRODUCTION

WITH the development of science and technology,
urbanization process has been accelerating world-
wide, which on one hand improves people’s life quality, on
the other hand gives rise to serious problems, such as envi-
ronmental pollution, traffic congestion and ever-increasing
energy consumption. As data collection becomes easier and
cheaper, a wider variety of big data in urban space, such as
human mobility data and air quality data, are generated
and become available. These data make it possible to tackle
challenges that we are facing and help build smarter cities.
For instance, we can analyze urban traffic congestions based
on GPS trajectories collected from taxis [1] and explore
causes of air pollution by correlating air quality data with
other related data sources, such as road network, traffic,
and point of interests (POIs) [2]. The findings could be used
to support decision making and help better formulate city
planning for the future. Inspired by the vision of better cit-
ies, urban computing has drawn more and more attentions
of researchers from different fields, who aim to unlock the
power of knowledge from big and heterogeneous data col-
lected in urban context and apply this powerful information
to tackle problems challenging us at present [3].

Although the term “urban computing” was coined and
first used in 2003 by Eric Paulos [4] and many researchers [5],
[6], [7], [8] have been working on it over years, there are still
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quite a few issues which have not been addressed satisfacto-
rily. Recently, Zheng et al. [3] presented a survey on urban
computing, which introduced general framework, key
research problems, methodologies, and applications mainly
based on automated data mining approaches. However, as
known to all, urban computing is a multi-disciplinary
research field, where computer science meets conventional
city-related areas, such as civil engineering, transportation,
economics, energy engineering and environmental science,
which usually leads to complex analytical tasks for real
world applications. Therefore, a fully automatic analysis is
difficult, often requiring considerable experience and pro-
found knowledge in various fields. It is important to include
human perception in the data exploration process and com-
bine the flexibility, creativity and domain knowledge of
human beings with enormous storage capacity and compu-
tational power of today’s computers.

Visualization, the study of transforming data and infor-
mation into interactive visual representations [9], provides
an effective way to integrate humans in a data exploration
process, applying their perceptual abilities to the target
datasets and leveraging their domain knowledge to guide
the exploration. Furthermore, visual analytics combines
automated analysis with interactive visualization for effec-
tive understanding, reasoning and decision making on the
basis of a very large and complex dataset [10]. Though the
importance of visual analytics has been recognized, espe-
cially for urban computing [3], it remains a vague concept
with many questions still pending. For example, what role
can visualization play in urban computing? What are the
representative visual designs in this domain? How can we
combine visualization with automated approaches of data
mining or machine learning, and how does an urban visual
analytics system work?

In order to address these issues, in this article, we focus
on visual analytics in urban computing (hereafter referred
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to as urban visual analytics) and discuss several important
issues from the perspective of visualization. We hope this
article will help the community better understand and
explore this area, therefore guide future work that can even-
tually lead to better cities. The paper hereunder is organized
as follows: The data types frequently used in urban visual
analytics are first discussed in Section 2. Then Section 3
elaborates on the various visualization techniques for spa-
tial, temporal and other properties of urban data. In Sec-
tion 4, based on the framework of urban visual analytics,
we discuss how visualization can be combined with auto-
mated approaches to enhance understanding and mining of
urban data. Finally, this article is concluded and future
work is highlighted in Section 5.

2 URBAN DATA

In real-world applications, solving urban challenges usually
needs to consider a broad range of factors, which requires a
clear picture of what data can be leveraged in urban context.
Meanwhile, different types of urban data demand different
visualization and analysis methods. In this section, we cate-
gorize the frequently used urban data types in the field of
visualization into six categories (i.e., human mobility data,
social network data, geographical data, environmental data,
health care data and others), and discuss the common prop-
erties of urban data which need to be taken into account for
visual analysis. Table 1 summarizes the respective attributes
of different data types and representative existing datasets.

2.1 Frequently Used Data Types
2.1.1  Human Mobility Data

In recent years, human mobility data is one of the most fre-
quently used data types in urban visual analytics. It can
facilitate the study of social and community dynamics,
which is an important issue for many practical applications
in the modern society. Based on different data sources,
human mobility data can be further categorized into traffic
data, commuting data, mobile phone data and geo-tagged
social media data.

e Traffic data: refers to the type of data generated and
collected by sensors in traffic vehicles (e.g., taxis,
buses, metros, trains, vessels and planes) or monitors
installed along the roads (e.g., loop sensors, surveil-
lance cameras) [11].

1) Vehicle-based traffic data records positions of
vehicles from time to time and form a series of
trajectories with temporal (i.e., timestamp) and
spatial (i.e., longitude and latitude) information.
Other information accompanying with trajecto-
ries, such as instant speed and heading direc-
tions, can also be collected. Compared with other
traffic data, vehicle-based data can provide more
details of movement, while the coverage of data
still highly depends on the distribution of the
probing vehicles and it is challenging to recover
the citywide social and community dynamics
based on limited data. In recent years, efforts
have been made to deal with the limitations of
data and support various applications [5].
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2)  Loop sensors are usually embedded in pairs on
major roads to detect the time interval that a
vehicle travels across two consecutive sensors.
Based on the data collected by loop sensors, we
can easily calculate the travel speed as well as
traffic volume on roads to perform a network
analysis of traffic [12]. However, one obvious
limitation of loop sensors data is the limited cov-
erage, nor can it tell us any details about how a
vehicle travels on a road.

3) Surveillance cameras are widely deployed in
urban areas nowadays, generating a huge vol-
ume of images and videos. This type of traffic
data, called surveillance data, provides a visual
ground truth of traffic conditions. However, it is
still a challenging task to automatically extract
information, such as traffic volume and flowrate,
from these images and videos. Thus, currently
surveillance data only provides a way to monitor
citywide traffic conditions manually, which is
obviously inefficient.

e Commuting data: is a type of data recording peo-
ple’s regular movement in cities. Among various
data studied in the visualization community, card-
swiping data is a typical example of this type. Nowa-
days, in a modern city, passengers often use their
personalized RFID cards to tap on card readers on
buses or metro station entries to enter/exit the public
transportation system, thus generating a huge
amount of records of passenger trips in a public
transportation system. Each trip record includes an
anonymous card ID, tap-in/out stops, time, fares for
this trip and transportation type (i.e., bus or metro).
This type of data can be used not only to improve
the public transportation in a city [13] but also ana-
lyze citywide human mobility patterns [14].

e Mobile phone data: refers to data records of all
exchanges (e.g.,, phone calls, messages, internet)
between mobile phones and cell stations collected by
telecom operators. In addition to communication
information, this type of data provides locations of
users from time to time based on cell stations, which
offers unprecedented information resources to study
human mobility [15], [16], [17] in terms of the large
coverage and fine-grained resolution of urban
population.

e Geo-tagged social network data: refers to a part of
posts (e.g., blogs, tweets) through social networks
which are tagged with geo-information. The avail-
ability of spatial and temporal information in social
media can help us better understand people’s activi-
ties [15], [18], [19]. Although rich information con-
tained in such type of data makes it popular and
interesting for human mobility analysis, the major
challenges lie in the sparsity and uncertainty of data.

2.1.2 Social Network Data

Nowadays, social network becomes one of the most popular
means of communication, generating huge amount of data,
called social network data. Besides geo-information dis-
cussed previously, this type of data contains valuable
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TABLE 1
Frequently Used Urban Data
Type : cels
Data Category Data Property NTC T Representative Datasets
Time v/
Location V4 Taxi [1][23] [24] [25] [26] [27]
. Velocit [28][29][30][31], bike [3] [32],
Vehicle-based Directioyn 5 “aircraft [33][34], train [35],
Vehicle type V4 vessel [34] [36] [37]
Vehicle ID v
D V4
Cell information Location v/
Traffic data Direction v
Loop sensors Platglnmurenber v 7 Loop sensors data in Beijing [12]
Vehicle record Plate color V4
Human Cell/Lane ID v
mobility data Speed v/
. Tlm'e Y Tunnel surveillance video [38], traffic
Surveillance Location v/ video clips [39]
Image/Video ps 1221
Card ID V4
Commuting data | RFID card data 1{.2%__1:;1//%?; St:(r)fcs \\; Smart card data in Singpore [13] [40]
Transportation type V4
U;i;leD 7 v Telco data in Guangzhou [17],
Mobile phone data 5 - telecommunication data in Abidjan [16]
ase station ID v/ and R [41]
Base station location V4 and Rome
Geo-tagged social network data (refer to social network data) Weibo [18] [42], twitter [19], flickr [15]
Time N
Content /| Twitter [43] [44] [45] [46] [47]
Social network data User profile [48] [49] [50] [51] [52],
Post type V4 youtube comments [53]
Geo-tag v
Intersections LocI?tion 7 v
Road network Start intersection V4 gdqqha[taglg[ﬂ] [53], Boston [36],
Road segments End intersection V4 eijing [39]
Condition NERY
. . Start sto;
Geographical ) Transit routes End stopl)) & Bus [16], subway [57] [38],
data Transporation network — . ’
Stop facilities v/ | public transportation system [13]
Schedule information v
Location V4
POI Aﬁ:g:s v Foursquare [59] [60]
Category V4
Time v/ Meteorological data [61], river
Environment monitoring Location V4 water quality [62], air pollution [2]
. Tndices Vv [63], satellite remote sensing data [64]
Environmental -
data Tlme v . .
Energy consumption Apphange v/ UK domestic energy consumption [65]
Consumption vV [66], gas consumption [67]
User ID V4

Note that open data sources are highlighted with underlines, and N,C,T are short for numerical, categorical and textual respectively.

information in two aspects. On one hand, analyzing commu- o
nications between users enables us to study the relationship
among different people as well as the social structure of a
certain community [20]. On the other hand, the user-gener-
ated social media, such as texts, photos and videos, contain
rich information about a user’s interests and characteristics,
which provides references for researches on various social
issues, like evolving of public attention on topics of social
media [21], and spreading of anomalous information [22]. o

2.1.3 Geographical Data

Geographical data is a fundamental data type in urban visual
analytics which provides basic structure as well as semantic
information for urban computing scenarios. In the field of
visualization, road network data, transportation network data
and POI data (point of interest) are frequently used data of

this type.

Road network data: is usually in the structure of
a graph that is comprised of a set of edges and
nodes, representing road segments and intersec-
tions respectively. Each node is described by a
unique set of geographical coordinates, while
each edge is associated with other related proper-
ties, such as length, speed limit, type of road and
number of lanes.

Transportation network data: includes transit

routes and stop facilities of the bus and metro
network which is modeled as a directed graph.

Each stop facility is described with ID, geographi-
cal coordinates and related edge connection in the
network. In addition,
often included with a timetable showing when
each bus/metro leaves its starting terminal, and

schedule information is

reaches each stop along its transit route.
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e POI data: depicts related information of facilities,
such as restaurants, shopping malls, parks, airports,
schools and hospitals in the city. Each facility is usu-
ally described by a name, address, category and a set
of geographical coordinates.

2.1.4 Environmental Data

In recent years, accelerating urbanization has led to serious
environmental problems worldwide, such as severer envi-
ronmental pollution and ever-increasing energy consump-
tion. Many studies on urban visual analytics have been
dedicated to analyze related datasets to tackle the environ-
mental problems. These datasets can be categorized into
two classes, environment monitoring data and energy con-
sumption data. The former includes meteorological data
(e.g., temperature, humidity, sunshine duration and
weather conditions) [69], [70], air pollution data [2], [61],
water quality data [62] and satellite remote sensing
data [64]; the latter records consumptions of electricity [65],
gas [67] etc., which can help to evaluate and optimize
energy usage in a city by detecting correlations [66] and pre-
dicting peak loads of demand [67].

2.1.5 Other Related Data

As we all know, modern cities are integrated and compre-
hensive units, thus there are quite a few other related urban
data in addition to those data types mentioned above, such
as health care data [71], [72], [73], [74], [75], public utility
service data [76], economy data [77], [78], [79], [80], educa-
tion data [81], [82], manufacturing data [83] and sports
data [84], [85], [86], [87], [88].

With the development of computing and data technol-
ogy, more and more urban data will become available,
which enables us to build a better and smarter city in the
near future. Meanwhile, the increasing complexity and het-
erogeneity of urban data will bring great challenges and call
for more advanced data analysis technologies. Urban visual
analytics, discussed in the following parts, is definitely a
step forward towards this objective.

2.2 Properties

Based on existing works in urban visual analytics, three fun-
damental properties, time (when), space (where) and object
(what) can be extracted from urban data. They are elemen-
tary components for telling a full story under urban context
and can help structure the information domain. The three
basic properties are briefly depicted as follows.

Time, mathematically speaking, is a continuous or dis-
crete linearly ordered set consisting of time instants or time
intervals, jointly called time units [89]. Meanwhile, the time
is not only a linear sequence but also includes inherent
cycles, like iterations of seasons, weeks and days. This prop-
erty provides temporal information which is essential to
organize urban data for an efficient and effective analysis.

Space can be regarded as a set of locations. This is another
common property to support the analysis of urban data. The
existing ways of specifying locations in space can be sum-
marized as follows [89]: a) coordinate-based referencing: refers
to tuples of numbers representing the distance to certain ref-
erence points or axes; b) division-based referencing: refers to
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compartments of an geometric or semantic-based division
of space; c) linear referencing: refers to relative positions
along linear reference elements, such as streets, rivers and
trajectories.

Objects include a set of physical and abstract entities.
Objects, which are often analyzed in urban visual analytics,
can be classified into three types according to their spatial
and temporal properties. A spatial object refers to an object
having a certain position in space, such as vehicles, persons
and facilities, while a temporal object refers to an object
existing in a certain period of time, which can also be called
event. And a spatio-temporal object represents an object
with a specific position in both space and time domains. In
addition, other related attributes are often associated with
objects for a comprehensive analysis.

3 VISUALIZATION OF URBAN DATA

In recent years, a few open tools have become available for
data visualization, such as Google Charts [90], Datawrap-
per [91], Baidu Echarts [92], Many Eyes [93] and Tableau [94].
However, most of them are too general to meet practical
needs and support complex analytical tasks of real-world
applications. Therefore, in this section, we survey the existing
visualization techniques for urban data. Specifically, we dis-
cuss how and what visual channels can be used to visualize
time, locations and other properties, which can facilitate better
understanding and guide future work.

3.1 Visualization of Time

Time is one of the most important properties of urban data.
The question is: How can time be presented visually? In this
section, we focus on the “time” that is regarded as the mea-
sure by which urban data can be ordered from the past
through the present into the future. We consider the mea-
sure of time durations and intervals between data items as
numerical properties whose visualization will be discussed
in Section 3.3.

There are various ways of mapping time to visual varia-
bles [68] as shown in Fig. 1. Under urban context, the axis-
based design is the most popular method thanks to its sim-
plicity and understandability. To visualize linear time, the
classic method is charts, such as line chart (Fig. 3a) and
stacked graph (Fig. 3b), where time is mapped to a horizon-
tal axis and time-dependent attributes mapped to a vertical
axis. Thus, the peaks or valleys of variable evolutions over
time can be indicated clearly. Moreover, in order to empha-
size the cyclic character of time, a clock-like circular time
axis is often adopted. Fig. 3c shows an example of circular
time axis which visualizes hotness of 96 human activities
during 24 hours of a day (one activity per ring) [95]. The
radial layout can help to reveal potential periodic patterns
more intuitively.

In addition, the axis-based design presents absolute time
precisely, while color and connection are two common meth-
ods to interpret time of urban data relatively [64], [96], [97].
Examples of presenting chronological order of data using
color and connection are given in Fig. 4. Note that color [64]
and connection [98], [99] can also be used separately.
Although these two methods are widely used, their common
limitation is the scalability which is caused by the limited
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Fig. 1. Examples of mapping time to visual variables [68].

capability of human’s eyes in distinguishing different colors
and the potential clutter of connections respectively. There-
fore, they are best used in combination with details-on-
demand interactions.

Besides the static visualizations discussed above, temporal
information can also be conveyed through a dynamic visual
representation, which results in visualizations that change
over time automatically (e.g., animation) [100]. However, as
demonstrated by Robertson et al. [101], animation is generally
not effective for analytical tasks due to the limitation of
human short-term memory.

3.2 Visualization of Locations

With increasing availability of location-acquisition technolo-
gies, lots of urban data are collected with geographical loca-
tions. As discussed in Section 2.2, locations in urban context
are often specified by three means: coordinate-based referenc-
ing, division-based referencing and linear referencing. Here
we discuss the corresponding visualization techniques for
these three types of locations, namely point-based visualiza-
tion, region-based visualization and line-based visualization.

3.2.1 Point-Based Visualization

Point-based visualization is the most direct and intuitive
type of visualization to present and analyze locations, as

most locations are commonly recorded based on geogra-
phical coordinates in raw data. The basic idea of this
type of techniques is to place points individually within
spatial context (e.g., on a map). Each point represents an
object [35], [102] or event [15], [24], [103], and visual chan-
nels (e.g., color, size) of these points encode related informa-
tion (e.g., status of objects, category of events).

For instance, in TaxiVis [24], points in different colors are
used to represent pickups and drop-offs of taxi trips in
Manbhattan to identify regular patterns as well as anomalies.
As shown in Fig. 2, we can clearly see that, during 8-10 am,
there were almost no taxis trips along 6th Avenue which
turns out to be the holding place of Five Boro Bike Tour
where traffic was blocked.

In addition to marking a spot as a point on the map,
Andrienko et al. [104] proposed a group space in which the
positions of individuals are converted from geographical
space to an abstract space. Individuals are marked as points
in the group space to analyze relative locations of individu-
als with respect to group movement.

The advantage of point-based visualization is that it ena-
bles users to clearly observe individual objects or events in
the data. But when the number of objects or events becomes
large, severe visual clutter will make the visualization
unclear and hard to interpret. Heatmaps (Fig. 5a) with

Fig. 2. Example of point-based visualization of locations: Pickups (blue) and drop-offs (orange) of taxi trips in Manhattan from 7 to 11am on May 1,
2011 are labeled by colored points. Notice that during 8-10 am, there are virtually no taxi trips along 6th Avenue, implying the traffic was blocked

because of Five Boro Bike Tour [24].
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(a) Using line charts to represent linear time [24]. It shows the number of taxi
trips originating in three regions (lines in different colors) of New York City
from May 1 to May 7, 2011.

(b) Using ThemeRiver, a well-known type of stacked graph, to represent
linear time [64]. It shows the evolution of the covered area by the Antarctic
ozone hole from Aug. 23 to Nov. 5, 2012.

High

o Activity

(c) Adopting circular time axis to visualize periodic time [95]. It shows
hotness of activity during 24 hours of a day for 96 human activities (one
activity per ring), and a complementaty 3D representation is shown in the
center to facilitate peak identification.

Fig. 3. Axis-based design for visualization of time.

kernel density estimation (KDE) serve as a common solu-
tion to tackle this problem [27], [105], [106].

3.2.2 Region-Based Visualization

Region-based visualization is often used to show aggre-
gated information based on regions of a predetermined
division of space. Choropleth map (Fig. 6a) is a typical
example of region-based visualization, which shows regions
as area marks using given geometry and an attribute is
encoded with color [107], [108].
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Fig. 4. Using color and connection to present relative time of data [96]. It
shows the evolution of global temperature between 1884 and 2012, with
points representing annual temperature world maps of these years and
being connected in a chronological order. Color encodes relative time of
each data point. Three representative temperature maps for three years
are shown (right).
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(®)

Fig. 5. Examples of using heatmap and density map to visualize loca-
tions for a large scale of objects, events or trajectories: (a) Visualizing
hotspots in a city [27]. The locations with a large number of vehicles
passing by are shown in red. (b) Visualizing accident risk based on tra-
jectories of passenger (turquoise), cargo (pink), and tanker (green) ves-
sels in front of Rotterdam harbor [37].

Moreover, to visualize the flows between regions, the
flow map can be embedded [89], [109]. However, a flow
map easily becomes illegible due to the massive interactions
and overlapping of flows as the data size increases. Cur-
rently, Guo et al. [110] proposed a new approach to flow
smoothing and mapping based on a novel definition of flow
neighborhood that addressed three major problems with
flow map, including the cluttering problem, the modifiable
area unit problem and the normalization problem. One
example of smoothed flow map for migration patterns in
the USA is shown in Fig. 6b. In addition to the flow map,
Zeng et al. [14] designed a circos figure to visualize inter-
change patterns among different regions of a city (Fig. 6¢).

In general, region-based visualization has advantages in
revealing macro patterns (e.g., flows among regions), while
inadequate for analyzing micro patterns (e.g., individual’s
behavior) [11]. Therefore, this type of techniques is often
used in combination with other techniques to support a
comprehensive analysis with different levels of detail.

3.2.3 Line-Based Visualization

In urban context, it is common to specify locations based on
road maps or traffic networks (i.e., linear referencing, refer
to Section 2.2). Line-based visualization can be used to pres-
ent such type of locations [1], [13], [26], [27], [57], [112]. An
example is given in Fig. 7a.

In addition, with the improvement of positioning technol-
ogies, it becomes possible to turn the discrete data points into
a continuous form, called trajectories, which can tell more
semantic information in the space. Line-based visualization
can also be used to depict locations on the basis of trajectories.
Conventionally, a trajectory can be drawn as a line or curve
on a map connecting from the initial point to the last point
sequentially [33]. To facilitate the reveal of hidden patterns,
trajectories can also be transformed and presented in
other spaces using topological or geometric algorithms
[104], [113], [114]. For instance, Crnovrsanin et al. [113]
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Fig. 6. Examples of region-based visualization: (a) Choropleth map
showing US unemployment rates of different regions from 2008, where
a darker color means a higher unemployment rate [111]. (b) Visualizing
migration flows between different regions for age 65-69 in the
USA [110]. (c) The interchange circos figure designed to visualize inter-
change patterns among regions in city scale (left), regional scale (top
right) and road network scale (bottom right) [14].

proposed the proximity-based visualization, transforming
trajectories into an abstract space based on proximity data
which is computed as the distance between moving objects
and some reference locations. Figs. 7b and 7c show an exam-
ple of applying traditional line-based visualization and prox-
imity-based visualization respectively to visualize people’s
moving trajectories during the simulation of an evacuation in
an office building [113].

Furthermore, for trajectories of large scale, many
approaches have been developed to avoid severe visual
clutter. First, edge bundling [115], [116], [117], [118] is one
of the most popular approaches which groups similar edges
into bundles. An example of applying edge bundling on

(b) ©

Fig. 7. Examples of line-based visualization: (a) Visualizing traffic pat-
terns at different locations based on the road network of Beijing [1].
(b) Traditional line-based visualization to show people’s moving trajecto-
ries during the simulation of an evacuation in an office building after the
detonation of an explosive in one of the rooms [113]. (c) Proximity-based
visualization which transforms original trajectories into an abstract space
where trajectories are plotted as distance to the explosion (y-axis) ver-
sus time (x-axis). After transformation, we can clearly notice the motion
of some people (green lines) before most of the other people (grey
lines), suggesting possible suspects or witnesses of the event [113].

line-based visualization is shown in Fig. 8. Although edge
bundling is effective in reducing visual clutter, it introduces
visual ambiguities that can impede the understanding of
trajectories. In contrast with edge bundling, KDE can also
be applied to generate density maps [37], [119] for visualiza-
tion of a large number of trajectories without twisting them,
where density of trajectories are encoded by colors (Fig. 5b).

3.3 Visualization of Other Properties
As shown in Table 1, urban data contains various properties
in addition to spatial and temporal information. These prop-
erties can be categorized into three types, including numeri-
cal properties, categorical properties and textual properties.

Numerical properties refer to those measurements of mag-
nitude that support arithmetic comparison, while categorical
properties are discrete attributes that can distinguish whether
two data objects are the same or different. Studies have been
done to explore proper visual channels to encode numerical
and categorical properties. As pointed out by Munzner
etal. [108], the same data attribute encoded with two different
visual channels will result in different information content
through our perceptual system. Therefore, it is necessary to
guide the design for the visualization of urban data based on
the effectiveness rankings of visual channels for numerical
and categorical properties as summarized in [108].

In addition, textual properties refer to information that
are recorded by text, such as content of posts on social net-
work, name of road segments and clinical history. These
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(b)
Fig. 8. Examples of edge bundling for line-based visualization of US

migrations [120]. (a) Original line-based visualization. (b) Applying edge
bundling to reduce visual clutter.

properties provide rich semantic information which is
essential for in-depth analysis and interpretation. Text-
based visualization techniques, such as Wordle [121], [122],
[123], can be employed for visualization of textual proper-
ties. Meanwhile, nature language processing (NLP) techni-
ques can also be integrated to extract information and
transform textual properties into other types [124].

3.4 \Visualization of Multiple Properties
3.4.1 Spatio-Temporal Visualization

When analyzing urban data for real-world applications, it is
often necessary to consider both spatial and temporal prop-
erties simultaneously. Space-time cube is a typical tech-
nique for spatio-temporal visualization [125]. It follows the
idea of mapping two spatial dimensions to two axes (i.e., x-
axis and y-axis) of a virtual three-dimension cube and use
the third dimension (i.e., z-axis) for the mapping of time.
The spatial context is often depicted by a map that consti-
tutes one face of the space-time cube. Thus, one can place
graphical objects in the cube in order to mark events of

Fig. 9. Space-time cube for spatio-temporal visualization, which
presents spatial dimensions along x-axis and y-axis, and time along z
axis. (a) Visualizing earthquake events in a space-time cube [126]. (b)
Visualizing the trajectory of a person’s movement in a space-time
cube [125].

283

SPEED
<500
500-10.00
10.00- 20.00
2000 - 40 00
40.00 - 60.00
60.00- 90.00
90.00 - 12000

.1

4
- =
L 1]

Fig. 10. A variant of space-time cube that visualizes trajectories as
stacked 3D bands along which color encodes velocity [29].

interest (Fig. 9a) [126], [127], [128], or construct trajectories
that illustrate path of objects (Fig. 9b) [89], [125]. To fulfill
the needs of real-world application, the standard space-
time cube can be enhanced to depict associated attrib-
utes [29], [129]. A typical example is given in Fig. 10, which
visualizes a series of trajectories in a space-time cube as
stacked 3D bands along which velocity is encoded by color.

However, the use of 3D visualization is controversial, and
may lead to ambiguity due to perceptual problems like poten-
tial occlusions [108], [130]. Therefore, for an effective analysis,
space-time cube usually relies on appropriate interactions to
allow users to view the data from different perspectives.

In addition, small multiples [131] and value flow
map [132], [133] can also be used to visualize spatio-
temporal data.

3.4.2 Multivariate Visualization

Besides spatial and temporal information, many other prop-
erties are also involved when analyzing urban data. For most
of the time, those properties are correlated, and analyzing
such correlations is essential for real world applications.
Therefore, visualizing multiple properties simultaneously
is required. Compared with multiple coordinated views,
multivariate visualization techniques can be employed to
visualize urban data in a more compact way, which is partic-
ularly important for data of high-dimensions. Recently, Liu
et al. [134] presented a survey on advances of multivariate
visualization in the past decade. In this section, we mainly
focus on visualization techniques which are widely used in
urban context. In addition to the conventional 2D /3D charts,
these techniques are summarized into four categories (i.e.,
pixel-based techniques, geometric projections, icon-based
techniques, and hierarchical techniques) following the tradi-
tional taxonomy by Keim et al. [135].

e Pixel-based Techniques

Pixel-based techniques are a popular type of visualiza-
tion for urban data. The basic idea is to map data values to
pixels with a proper color scheme and then group the pixels
adequately for analytical tasks. This type of techniques
enjoys better scalability for displaying data items in a single
view than other techniques. For existing work in urban
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visual analytics, matrix is the most common form [1],
[136], [137], [138], to arrange pixels due to its interpretability
and simplicity. Moreover, the circle segment is a variant of
the matrix form, whose idea is to represent data in a circle
which is divided into segments, one for each attribute. The
ring map [95] is an example of this type (Fig. 3c).

Although pixel-based techniques enjoy relatively better
scalability, human performance with this type of visualiza-
tion may be influenced by a number of factors, such as
screen resolution, working memory and attention demands
for a given task. Meanwhile, as data is so densely rendered
in the view, it leads to a heavy cost for online interactions
and animated transitions.

e Geometric Projections

Geometric projections aim to find informative projec-
tions and transformations for multivariate data so as to use
the spatial position channel to visually encode them [135].
Due to the complexity and homogeneity of urban data,
finding an appropriate projection is not an easy task.
Therefore, the use of methods in this category for urban
visual analytics is quite limited, mainly based on two tradi-
tional approaches, scatterplots [1], [64] and parallel
coordinates [17], [139].

In a scatterplot, data items are mapped along x and y axes
of a Cartesian coordinate system defined by two data prop-
erties or multidimensional projections like principle compo-
nent analysis (PCA) or multidimensional scaling (MDS).
Scatterplot matrix is a variant of scatterplot in which multi-
ple pairwise projections of data properties can be shown
simultaneously. However, the scalability of a scatterplot
matrix is limited to around one dozen attributes and hun-
dreds of items [108], and will suffer a scalability problem
when the dimensionality or data size becomes larger.

A parallel coordinates plot (PCP) presents a multivariate
data item as a polyline with vertices on parallel axes, and
each axis corresponds to one data property. However, par-
allel coordinates suffer from two major limitations. One is
how to determine the order of axes, as different axis order
will highlight different aspects of the data structure. The
other is the visual clutter problem caused by a large number
of polylines.

e Icon-based Techniques

Icon-based techniques aim to provide a compact form to
map properties of each multivariate data item to graphical
features of an icon or glyph. For urban visual analytics,
there are many examples of glyph usage, especially in con-
junction with other visualizations, such as maps [140], scat-
terplots [64] timelines [141] and graphs [45], to facilitate a
comprehensive analysis. It is widely believed that a good
glyph design can facilitate effective learning, memorizing
and comparing, while a less effective glyph design may suf-
fer from perceptually confusing, semantically ambiguous,
or hard to learn and remember [142]. In general, it is not an
easy task to design an effective glyph. Even though most
existing designs have undergone an enduring process of
evolution, refinement and standardization [142], one of the
most common criticisms of using glyphs is that there is an
implicit bias in most mappings (i.e., some graphical features
or relationships between features are easier to perceive than
others) [143].

e Hierarchical Techniques

Hierarchical techniques are mainly designed to visualize
the hierarchy structure of data, including both dimension
hierarchies [17], [144], [145] and data hierarchies [20], [22]
[146], [147]. It splits the data space into subspaces and
organizes them in a hierarchical manner. For visualization
of urban data, node-link diagram and treemap are two fre-
quently used visual forms. In a node-link diagram, data items
are presented as nodes with links among nodes represent-
ing corresponding relationships. There are various applica-
tions of node-link diagrams in urban context including
community visualization [20], [148], topic analysis [146],
and information diffusion interpretation [22], [149]. Treemap
is a space-filling method that partitions the visual space into
regions and shows hierarchical relationships with contain-
ment. Based on the classic treemap, many extensions, such
as Voronoi treemap [150], Nmap [151] and contour-based
treemap [17] have been proposed for different analytical
tasks and application scenarios.

4 COMBINATION OF VISUALIZATION AND
AUTOMATED ANALYTICAL APPROACHES

Automated data analysis techniques enable convenient
exploration of data and discovery of patterns, such as clus-
ters, trends and anomalies. However, due to the growing
mass and increasing complexity of urban data, automated
approaches suffer more and more challenges. In the mean
time, some information is hard to be precisely quantified in
certain applications (e.g., personalized preference), which
makes automated approaches even not applicable. On the
other hand, visualization has now become a standard tech-
nique that can help involve human perceptual capabilities
into the automated data exploration process. Through the
combination of visualization and automated analytical
approaches, high-level and complex tasks can be performed
more effectively and efficiently.

In this section, we discuss how visualization can be com-
bined with automated analytical approaches, which is one
of the core issues of urban visual analytics. Based on the
existing work, we believe the benefit of this combination is
not limited to model visualization and building as described
in the general frame work of visual analytics by Keim
et al. [152]. It can bring various benefits and has great poten-
tial for future development. For example, visualization can
be adopted to provide different levels of data summariza-
tion for the hypothesis investigation, and facilitate a proper
choice of automated approaches for further analysis and
mining. Results generated by automated analytical
approaches can also be presented via certain visual forms to
achieve a better understanding and interpretability. Mean-
while, visualization can be integrated into an automated
machine learning process to make it more effective and flex-
ible for various applications. Therefore, we survey the exist-
ing urban visual analytics tools and categorize them into
two classes based on their different outputs (Fig. 11), which
also implies different roles that visualization plays. One
class is “data exploration and pattern interpretation” for which
visualization enables analysts to explore data interactively
and gain better insights of existing patterns detected by
automated approaches. The other class is “visual learning”
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Fig. 11. Two types of combination of visualization and automated analyt-
ical approaches for existing urban visual analytics tools.

where analysts seek the help of visualization to guide auto-
mated data mining or machine learning process, leading to
sort of artificial intelligence, such as a classifier [40], a pre-
dictor [53] or a regression model [67], which can be applied
on a larger scale of data for further exploration.

4.1 Data Exploration and Pattern Interpretation

In recent years, a large number of urban visual analytics
tools have been developed, which combines visualization
with automated analytical approaches for data exploration
and pattern interpretation in urban context. They cover dif-
ferent urban data types, including human mobility data,
social network data, and environmental data. In the follow-
ing part, we present representative works for different data
types and summarize them in Table 2.

4.1.1  Human Mobility Data

Human mobility data is one of the most popular types of
urban data. Lots of work has been done for various applica-
tions, such as pattern interpretation [1], [14], [17], [26], [27],
[106], understanding of movement [12], [153], [154], [155],
monitoring of transportation system [13], [16], [30], [38],
[58], [156], [157], and incident detection [15], [19], [158].
First of all, many studies focus on interactive methods to
detect and explore various patterns hidden in human mobil-
ity data. For instance, Wang et al. [1] presented a visual ana-
lytics system for the analysis of patterns in traffic
congestions. Traffic congestions are characterized by low
speed on the road. The system not only enables the road
segment level analysis, but also provides a comprehensive
exploration on the propagation graph level which depicts
the propagation of a traffic congestion in time and space.
TelCoVis [17] (Fig. 12) is a visual analytics system for the
co-occurrence pattern in urban human mobility, a pattern of
high social and business values. A series of coordinated vis-
ualizations are provided to gain insights of co-occurrence
and analyze correlations of co-occurrence events through
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biclusters. Liu et al. [27] proposed a visual analytics
approach to explore route diversity (Fig. 13b). The system
supports a multi-scale analysis of diversities which can help
reveal the importance of different road for different trips
and support urban planning and management. In addition,
Zeng et al. [14] looked into interchange patterns aiming at
revealing passenger redistribution in a transportation net-
work (Fig. 13a), while Zheng et al. [106] studied bi-direc-
tional movement patterns which exist ubiquitously in our
daily life. Moreover, Huang et al. [26] proposed TrajGraph,
a new visual analytics method, for studying urban network
centralities by integrating graph modeling with visual anal-
ysis based on taxi trajectory data. LIVE Singapore! [156] is
another representative project by MIT Senseable City Lab
which developed interactive applications (Fig. 14) enabling
experts and citizens to gain a better understanding on how
Singaporeans move through urban space and explore the
various narratives found within urban mobility.

Besides pattern analysis, some researchers tried to develop
visual analytics tools to facilitate understanding of movement
in urban context. Andrienko et al. [153] investigated the
aggregation methods for visual analysis of movement data
from two aspects, traffic-oriented and trajectory-oriented, to
support analytical tasks for city traffic management. Poco
et al. [159] explored traffic dynamics in urban environments
using vector-valued functions. Further, Von et al. [154] pro-
posed MobilityGraphs, a graph based method, to reveal the
variation of the presence of people in different places over
time as well as the movement flows between places. Cluster-
ing is utilized to support data exploration from different
aspects and at different scales. Moreover, Wang et al. [12] pre-
sented a visual analytics system to understand urban traffic
based on sparse traffic trajectory data (i.e., loop sensors data)
through global exploration, cell exploration and correlation
exploration (Fig. 15). Local animation and aggregation meth-
ods are utilized to address the uncertainty issue.

In addition, transportation is a hot topic in urban com-
puting, thus recently many visual analytics tools are devel-
oped to monitor the transportation system based on human
mobility data. Zeng et al. [13] explored passengers’ mobil-
ity in the public transportation system of Singapore based
on passenger RFID card data, enabling visualization and
exploration of various mobility related factors such as rid-
ing time, transfer time and waiting time (Fig. 16). Palomo
et al. [58] proposed TR-EX, a visual analytics system, to
study the New York City subway service based on transpor-
tation schedules. Moreover, Lorenzo et al. [16] presented
AllAboard, an intelligent tool to enable city planners visu-
ally explore urban mobility and interactively optimize pub-
lic transportation based on mobile phone data. There is also
work based on surveillance videos, such as analyzing the
movement of recorded objects [157] and monitoring traffic
conditions in a tunnel [38].

Other work based on human mobility data is dedicated to
detecting and investigating incidents in urban context.
Andrienko et al. [158] came up with a visual analytics proce-
dure for analyzing place-related events. The procedure con-
tains four steps: 1) event extraction from trajectories,
2) determine relevant places, 3) aggregating events and tra-
jectories, and 4) analysis of the aggregated data. Meanwhile,
Andrienko et al. [15] also proposed a suite of visual analytics
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TABLE 2

Representative Urban Visual Analytics Tools for Data Exploration and Pattern Interpretation

Category

Tools / Systems

Characteristics

Datasets

Human mobility data

Social network data

Environmental data

Huang et al. [26]
Wang et al. [1]

Liu et al. [27]

Zheng et al. [106]
Wang et al. [30]
Kloeckl et al. [156]
Andrienko et al. [158]

Andrienko et al. [153]
Poco et al. [159]

Palomo et al. [58]
Zeng et al. [13]
Zeng et al. [14]
Wu etal. [17]
Lorenzo et al. [16]

Andrienko et al. [15]

Von et al. [154]

MacEachren et al. [19]
Wang et al. [12]

Meghdadi et al. [157]
Piringer et al. [38]

Liu et al. [47]
Cao et al. [45]
Sun et al. [48]
Wu et al. [51]
Zhao et al. [22]

Zhao et al. [52]
Xu et al. [21]
Bosch et al. [43]
Cao et al. [44]

Chae et al. [46]
Krueger et al. [160]

Kwon et al. [161]

Accorsi et al. [62]
Lietal. [69]
Goodwin et al. [65]
Qu etal. [61]

Interpretation of urban transportation pat-
terns
Exploration of urban traffic congestions

Exploration of route diversity

Interpretation of bi-directional movement
patterns
Analysis of real traffic situations

Exploration of mobility patterns in Singapore

Extract and characterize significant places of
a city

Spatio-temporal aggregation for movements
Exploration of traffic dynamics using vector-
valued functions

Interpretation of spatio-temporal patterns in
transportation services

Exploration of passenger mobility in a public
transportation system

Revealing interchange patterns of passengers
in a transportation network

Exploration of co-occurrence pattern in
urban area

Exploration of urban mobility for public
transport optimization

Reconstructing past events from activity
traces

Clustering of mass mobility flow via spatio-
temporal graphs

Situational awareness of crisis
Exploration of sparse traffic trajectory data

Visualization of objects’ trajectories in videos
Situation awareness of road tunnels

Exploratory microblog retrieval

Exploration of anomalous user behaviors
Interpretation of topic coopetition
Interpretation of opinion diffusion
Interpretation of anomalous information
spreading

Understanding personal emotion style
Interpretation of topic competition
Real-time monitoring of microblog messages
Tracing spatio-temporal process of informa-
tion diffusion

Interactive abnormal event detection
Interactive exploration of movement seman-
tics and handling semantic uncertainties in
space and time

Exploration of conversation threads of online
health communities

Exploration of river water quality
Exploration of climate change data
Exploration of energy consumption data
Analysis of the air pollution problem in
Hong Kong

Taxi trajectories in
Shenzhen, China

Taxi trajectories in Beijing,
China

Taxi trajectories in
Shanghai, China

Taxi trajectories in
Shanghai, China

Taxi trajectories in
Hangzhou, China

Taxi trajectories in
Singapore

Car trajectories in Milan

Car trajectories in Milan
Taxi pickups and dropoffs
in New York City

New York City subway
service

Passenger RFID card data in
Singapore

Passenger RFID card data in
Singapore

Mobile phone data in
Guangzhou, China

Mobile phone data in
Abidjan

Mobile phone data in
Milano; Flickr photos made
on British Isles

Geo-tagged twitter in
London; mobile phone data
in Abidjan

Geo-tagged twitter

Traffic loop sensors data in
Nanjing, China
Surveillance videos
Surveillance videos

Twitter
Twitter
Twitter
Twitter
Twitter

Twitter
Twitter
Twitter
Twitter

Twitter
Foursquare

OHC forum data

River water quality data
Climate change data
Energy consumption data
Air quality and weather
data
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Fig. 12. TelCoVis, a visual analytics system to explore co-occurrence
pattern in urban human mobility based on mobile phone data [17].

methods for detecting and reconstructing events from peo-
ple’s activity traces. Besides, SensePlace2 [19] is a visual ana-
lytics system developed to support situation-aware
exploration of crisis events based on geo-tagged twitter.

4.1.2 Social Network Data

Based on social network data, many interesting topics are
investigated, among which topic evolution and information
diffusion are two popular topics in recent years.

Xu et al. [21] proposed a timeline visualization tool
(Fig. 17) to interpret the competition for public attention on
multiple topics promoted by various opinion leaders on
social media. The tool features both topical and social aspects
of the information diffusion process. For the design, The-
meRiver shows the increase and decrease of competitiveness
of each topic, while opinion leaders are drawn as threads
which converge or diverge with regard to the change of their
roles in influencing the public agenda over time. Similar
work studying the evolution of topics or opinions on social
media includes EvoRiver [48] and OpinionFlow [51].

Cao et al. [44] proposed Whisper, a visual analytics sys-
tem for tracing of information diffusion process. Following
the metaphor of a “sunflower” (Fig. 18), three novel visual
ingredients: a hierarchical social-spatial layout, pathways of
information flow, and a dynamic diffusion series are
designed to characterize different diffusion processes in
Twitter, including collective responses, multi-step informa-
tion flows and temporal heterogeneity. Moreover, Zhao
et al. [22] presented #FluxFlow to study how rumors spread
in the social network.
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Fig. 13. (a) Exploration of interchange patterns in massive movement
data [14]. (b) Interpretation of route diversity of taxi trips in urban
area [27].
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LIVE Singagore!

(b)

Fig. 14. Two visualizations of LIVE Singapore! [156]. (a) Visualizing taxi
trips and demands in Singapore during heavy rainfalls. (b) Distorting
Singapore’s shape on a map to reflect the time it takes to travel from the
selected origin to other parts of the island.

Furthermore, social network data offer a great opportunity
for us to understand urban dynamics by providing rich
semantic information which is essential for in-depth analy-
sis in real-world applications. Therefore, another interesting
research direction should be combining spatial, temporal
and textual information extracted from raw social network
data to support interactive exploration and interpretation
on urban issues. For example, VAST Challenge 2011 [162]
provided a typical scenario in this direction, where compre-
hensive analyses of social media reporting illnesses in a city
are conducted to support decision making on a public
health crisis. Nabian et al. [163] proposed the design of the
MIT GEOblog platform, allowing people to share contents
based on their real-time locations sensed by the system.
Krueger et al. [160] presented a visual analytics approach to
enrich movement data with POI information using social
media services and handle semantic uncertainties in time
and space via a POI decision model in combination with
highly interactive visualizations (Fig. 19).

In addition, there is also work based on social network
data studying other topics, including anomalous user detec-
tion [45], event investigation [43], [46], conversation threads
exploration [161], emotion analysis [52], [164] and explor-
ative microblog retrieval [47].
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Fig. 15. A visual analytics system [12] for understanding of urban traffic
based on sparse traffic trajectory data through (a) global exploration,
(b) cell exploration and (c) correlation exploration.
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Fig. 16. Visual exploration of mobility of public transportation system in
Singapore based on RFID card data [13].

4.1.3 Environmental Data

Environment is an important topic in urban computing. In
the field of visualization, some work has been conducted to
explore different environmental datasets. Qu et al. [61] pre-
sented a visual analytics system to study the air pollution
problem in Hong Kong. Several novel visualizations, includ-
ing polar systems embedded with circular pixel bar charts,
enhanced parallel coordinates with S-shape axis, and
weighted complete graphs, are proposed to support multiple
analytical tasks, such as attributes correlation detection, data
comparison and air quality trend identification. Other
related work includes analysis of river water quality [62], cli-
mate change [69], [165], [166], and energy consumption [65].
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Fig. 18. Whisper: a visual analytics system with the metaphor of
sunflower for tracing information diffusion process in Twitter [44].
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Fig. 19. A system for interactive analysis of semantically enriched move-
ment data with POl information using social media services and handling
semantic uncertainties in time and space [160].

4.2 Visual Learning

The key objective of visual analytics as well as its challenge
is to identify the limits of analytical algorithms which can
not be appropriately automated, and then develop a tightly
integrated solution that adequately integrates automated
approaches with appropriate visualization and interaction
techniques [167]. Visual learning is an effective way to
achieve this objective. It is a special case of active learn-
ing [168] in which an automated machine learning or data
mining algorithm is able to interactively query users
through visualizations to optimize and obtain desired out-
puts. Here we first discuss how visualization can help dur-
ing three major steps of automated analytical approaches,
including 1) cohort construction; 2) feature selection and
model construction; 3) result evaluation and tuning, then
present the representative applications in urban visual ana-
lytics and summarize them in Table 3.

4.2.1 Cohort Construction

Cohort construction is usually the initial stage of an auto-
mated analytical approach. In this stage, analysts need to
choose proper data samples from a labelled dataset as the
input of a machine learning or data mining algorithm. Ide-
ally, samples in the dataset are assumed to be well labelled.
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TABLE 3
Representative Urban Visual Analytics Works for Visual Learning
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Steps Adopting Visualization

Works Characteristics Cohort Feature & Model = Result Evaluation &
Construction Selection Tuning
Andrienko et al. [23] Interactive visual clustering of large col- v/ Vv
lections of trajectories
Mubhlbacher etal. [67] ~ Regression model construction Vv
Lu et al. [53] Developing predictive models utilizing Vv Vv
social media data
Poco et al. [138] Visual reconciliation technique for model V4 V4
comparison in climate science
Arietta et al. [173] Identifying and validating predictive rela- v Vv
tionships between visual appearance of a
city and its non-visual attributes
Chen et al. [18] Tackling sparsity problems of geo-tagged Vv Vv
social network data for exploration of
movement patterns
Quinan et al. [174] Examining behaviors of and relationships Vv
among weather features
Yu et al. [40] Classification for the home-work pattern Vv
Liao et al. [175] Detecting anomalies in GPS data vV
Wang et al. [176] Construction of causal relations Vv
Cao et al. [177] Analysis of multidimensional clusters V4

However, in practice, labels may not exist or lack accuracy.
One solution is to label all samples manually, but it takes
tremendous efforts to label a large dataset. Besides, an input
with more data samples usually means a longer processing
time and more potential noises. Therefore, in many scenar-
ios [18], [23], [168], an active cohort construction is needed,
whose basic idea is to allow an automated algorithm to
choose an input with fewer efforts of labelling but leading
to a higher accuracy.

Fig. 20 illustrates this basic idea with an example of
binary classification. As shown in Fig. 20a, the dataset con-
tains 400 samples from two Gaussian distributions which
are plotted in a 2D space. If we randomly choose 30 samples
and label them, the accuracy of classifier trained on the
labelled samples is relatively low (i.e., 70 percent accuracy
in Fig. 20b). On contrary, labelling 30 carefully selected sam-
ples can dramatically increase the accuracy (i.e., 90 percent
accuracy in Fig. 20c). The reason is that a few training sam-
ples close to the decision boundary are crucial to the accu-
racy of classification.

Based on the above discussion, we can see that one of the
key issues for an effective automated analytical process is
the capability of locating the most informative data samples
as input (i.e., cohort construction). To achieve this goal,
visualization can enable analysts to obtain an overview of a
large number of data samples with different levels of detail
and provide visual cues to support the labelling process.
Thus analysts can choose samples wisely and make the ana-
lytical process more effective and efficient.

4.2.2 Feature Selection and Model Construction

Proper feature selection and model construction is a funda-
mental step for various data analytical tasks. Although
many automated computational approaches have been pro-
posed, they may not be efficient due to the large volume of
data. Moreover, in the era of big data, as models become

more and more complicated, most people, especially
domain experts, have difficulties in understanding the algo-
rithm and reflecting their domain knowledge throughout
the analysis process. For example, for artificial neural net-
works (ANNs), a popular computational model in machine
learning, it is an indeed difficult, very time-consuming, and
highly experience-dependent process to figure out the
details of model construction so as to improve the model for
a more satisfactory output. Even nowadays, there are rarely
efficient ways but to manually adjust the number of layers
or neurons within each layer, modify the drop rate or learn-
ing rate of the algorithm, or try all potential functions one
by one on neurons [170]. In order to tackle this limitation,
one possible way is to involve analysts in managing the out-
come from each iteration of automated optimizing process
through interactive visualization. In this way, analysts can
apply their domain knowledge to tune the data model, or
adjust the input data features, thus intuitively control and
improve the whole process of data exploration. Therefore,
in brief, visualization can clearly depict detailed data distri-
bution, help users define a better data model with appropri-
ate features, and avoid redundancy and misunderstanding
of data.
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Fig. 20. lllustrative example for the basic idea of an active cohort con-
struction [169]: (a) A dataset of 400 samples from two Gaussian distribu-
tions. (b) A classifier based on a logistic regression model trained with
30 randomly labelled samples (70 percent accuracy). (c) A classifier
based on a logistic regression model trained with 30 actively queried
samples (90 percent accuracy).
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4.2.3 Result Evaluation and Tuning

Evaluation of results is also an important issue in data anal-
ysis. Automated methods generate the optimal result
according to certain pre-defined measurements. However,
appropriate measurements are always difficult to find. In
another word, as each measurement has its own advantages
and disadvantages, analysts often have difficulties in choos-
ing a proper one for a certain analytical task. For example,
clustering is a powerful technique to automatically partition
data. However, it is difficult to evaluate the quality of clus-
tering results, especially for multidimensional data.
Although several measurements, such as Davies-Bouldin
index [171], index — J [172], have been proposed to compare
how well different clustering algorithms perform on a data
set, each measurement has its own drawbacks.

To tackle this challenge, when obtaining the results from
automated approaches, visualization can display the results
directly to analysts who can judge the performance and
tune the results based on their domain knowledge, which to
some extent, is much more effective and efficient than statis-
tical measurements, especially in practical applications.

4.2.4  Applications in Urban Visual Analytics

As an emerging field, to the best of our knowledge, the
applications of visual learning in urban computing are quite
limited. In this section, we briefly review some current rep-
resentative works and summarize them in Table 3.

Andrienko et al. [23] proposed an approach for interac-
tive cluster analysis of a large number of trajectories of mov-
ing entities, which are structurally complex. The approach
mainly contains four steps. First, the analyst chooses a man-
ageable subset of objects (i.e., cohort construction) and
applies clustering to it. And then users can inspect the result
and refine the clustering to gain meaningful results with
respect to the analytical tasks (i.e, result evaluation and tun-
ing). After that, the analyst can build a classifier based on
the clustering result and may also modify the clusters for
better conformance to the goals. And finally the generated
classifier is applied to the whole dataset. When necessary,
the analyst may repeat the procedure (take a subset - cluster
- build a classifier - classify) iteratively for unclassified
trajectories.

Muhlbacher et al. [67] proposed a visual analytics frame-
work for building regression models to address limitations
of automated approaches. The limitations include selecting
input variables, identification of local structures, transfor-
mations, and interactions between variables. The frame-
work combines a qualitative analysis of relationship
structures by visualization (Fig. 21) and a quantification of
relevance for ranking any number of features and pairs of
features which may be categorical or continuous. A central
aspect is the local approximation of the conditional target
distribution by partitioning 1D and 2D feature domains into
disjoint regions, which enables a visual investigation of
local patterns and largely avoids structural assumptions for
the quantitative ranking.

Lu et al. [53] presented a framework for the development
of predictive models utilizing social network data. Feature
selection mechanisms, similarity comparisons and model
cross-validations are combined through a variety of

[Visuaiizing the distribusion of a city's natural gas

Fig. 21. A visual analytics system for building regression models of
natural gas consumption [67].

interactive visualizations to support analysts in model
building and prediction. An overview is designed for quick
trend analysis with detailed views for tweet sentiment
exploration. A similarity widget is embedded to enable ana-
lysts to quickly evaluate and compare the accuracy of pre-
dictions based on various criteria of similarity, and to
perceive the quality of the generated prediction model.
Meanwhile, the core component of this framework is an
iterative feature selection and model construction module
for analysis and comparison.

When analyzing urban data, it often requires grouping of
data objects based on their similarity. While extracting
groups using a single similarity criteria is relatively straight-
forward, comparing alternative criteria poses additional
challenges. Poco et al. [138] proposed a visual reconciliation
technique that helps analysts understand the dependency
between alternative similarity spaces for climate models,
facilitates iterative refinement of groups, and allows flexible
exploration of the parameter space for reconciling the
importance of the model parameters with model groups.
Similarly, Quinan et al. [174] presented a visualization tool
to examine the behaviors of and relationships among
weather features. In addition, Arietta et al. [173] introduced
a method for interactively identifying and validating pre-
dictive relationships between the visual appearance of a
city and its non-visual attributes (e.g., crime statistics, hous-
ing prices, population density).

Chen et al. [18] proposed a visual analytics system to
study sparsely sampled trajectories extracted from geo-
tagged social network data which provides rich text and
movement information. To tackle the sparsity problem, an
uncertainty model based on Gaussian Mixture Model is pro-
posed to characterize the time interval distributions due to
various transportation methods. For an effective modeling
process, unreasonable time intervals need to be filtered
interactively to generate appropriate cohort as an input. In
addition, users could also adjust the parameters of models,
such as the output confidence interval range and the num-
ber of transportation methods (corresponding to the num-
ber of gaussian kernels in the model) for a better match
based on prior knowledge. Thus, through proper cohort
construction and model selection, users can effectively
model the movement patterns and explore the semantics
based on sparse geo-tagged social network data

Yu et al. [40] presented iVizZTRANS, a tool which com-
bines an interactive visual analytics component to aid urban
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Fig. 22. DICON: evaluation and tuning of multidimensional clustering
results [177].

planners to analyze complex travel patterns and decipher
activity locations for single public transport commuters. It
is coupled with a machine learning component that itera-
tively learns from the planners” adjustment of classifications
(i.e., result tuning) to train a classifier which is then applied
to the city-wide smart card data to derive the dynamics for
all public transport commuters.

Liao et al. [175] introduced GPSvas, a visual analytics
system that detects anomalies in GPS data. In the system, a
conditional random field (CRF) model is used as the
machine learning component for anomaly detection in
streaming GPS traces. Meanwhile, a visualization compo-
nent and an interactive user interface are built to visualize
the data stream, display significant analysis results (.e.,
anomalies or uncertain predications) and hidden informa-
tion extracted by the anomaly detection model, which ena-
bles human experts to observe the real-time data behavior
and gain insights into the data flow. In addition, analysts
can choose to browse the most relevant information to fur-
ther provide guidance to the machine learning model
through interaction and the learning model is then incre-
mentally improved.

Wang et al. [176] presented a visual causal analyst, a
novel visual causal reasoning framework that allows users
to apply their expertise, verify and edit causal links, and col-
laborate with the causal discovery algorithm to identify a
valid causal network. Its interface consists of both an inter-
active 2D graph view and a numerical presentation of
salient statistical parameters, such as regression coefficients,
p-values, and others. Both help users in gaining a good
understanding of the landscape of causal structures particu-
larly when the number of variables is large.

Cao et al. [177] designed DICON system which uses
dynamic icons (Fig. 22) to represent a multidimensional
cluster. The quality of clusters can be conveniently evalu-
ated with the embedded statistical information. And
through rich interactions (i.e., merge, split, filter, regroup
data within clusters), analysts can further refine clustering
results more efficiently.

To summarize, although automated approaches have
achieved some successes over past decades, limitations
become more obvious with the coming era of big data. The
combination of visualization and automated analytical
approaches provides us with a potential solution to tackle
these limitations and accomplish challenging tasks. The
need of such type of combination becomes more and more
intense with the increasing complexity of data and analyti-
cal tasks, especially in a multi-disciplinary field like urban
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computing, where advanced data science meets conven-
tional disciplines. Although some initial work has been
done in recent years, more efforts are needed to establish an
effective framework for this type of combination for various
real world applications.

5 CONCLUSION

Undoubtedly, we are in the midst of a data explosion. The
social and economic potential of data is widely recognized.
This presents both unprecedented opportunities and chal-
lenges to us. On one hand, there are reasons to believe that
more and more data will become accessible, which offers
precious information resources and opportunities to study
and build a better world. On the other hand, although
research in urban visual analytics has been hot for the last
few years, there are still quite a few challenging issues, such
as scalability, heterogeneity, sparsity and uncertainty, that
have not been addressed satisfactorily, while new research
topics keep emerging due to the boom in big data analytics.
Based on our survey, we point out several potential research
directions worth further study as follows:

First, with the improvement of data acquisition techni-
ques, data of new types keep emerging, most of which can-
not be visualized using existing methods directly. On the
other hand, the sparsity and uncertainty of data become
more and more remarkable. Pre-processing of these raw
data in order to use it for visual analysis bears several
potential quality problems. Data can be inherently incom-
plete or imprecise due to sampling errors or fuzziness
caused by privacy protections. Then how to generate an
appropriate visual design insensitive to data quality issues,
or how to explicitly visualize errors and uncertainties in
data to make the analysts aware of the problem poses great
challenges. Although some initial work [18], [178] has been
carried out, methods are far from enough to deal with these
challenges effectively. Thus, how to visualize these new
types of data with consideration of data sparsity and uncer-
tainty needs to be further studied in urban visual analytics.

Second, with the increasing complexity of analytical tasks,
urban big data analysis often requires synthesis of heteroge-
neous types of data [179]. So far, it is not an easy task to inves-
tigate the implicit relationship among multiple data sources,
and current visual analytics tools usually only support single
data type. Even worse, some applications may also require
visualization of streaming data to support real-time decision
making within situation-aware and immersive environments.
In order to meet the challenging analytical requirements in
the foreseeable future, new techniques for urban visual ana-
lytics capable of efficiently handling heterogeneous data and
streaming data will be needed.

Third, scalability in general is a key challenge of visual
analytics, especially for dealing with the wide variety of big
data collected in urban space. As the size of data is continu-
ously growing in terms of both the number and dimension
of data items, the compression rate to visualize the dataset
keep increasing, and therefore, more and more details are
lost. It is a future task of urban visual analytics to create a
high-level view of these urban big data to gain insight,
while maximizing the amount of details at the same time.

Fourth, we deem that most urban visual analytics appli-
cations should be developed using a user-centered design
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approach [108] and evaluation should take place in several
phases along the process. For a complete evaluation, differ-
ent aspects, including user preference, insight generation,
task performance and algorithmic efficiency, should be con-
sidered systematically. A comprehensive comparison with
existing techniques or tools may also be required to assess
the adequacy. In this context, objective rules of thumbs to
facilitate design decisions on urban visual analytics would
be important contributions to the field.

Moreover, we believe an effective way to mine treasures
from urban big data is to let more and more people not
only play the role of data consumers, but participate in
data analysis process through crowdsoursing. The term
“crowdsourcing” was first coined in 2005 by the Wired
Magazine [180], which is defined as the practice of obtaining
needed services or content by soliciting contributions from a
large group of people. Visualization, as a technique that har-
nesses human perception and cognition capabilities to fulfill
tasks, can offer remarkable opportunities in facilitating
crowdsourcing to tackle challenges in urban computing.
Despite some initial attempts [181], [182], it will be an interest-
ing direction with real potential to explore the benefits of com-
bining visualization and crowdsourcing.

Finally, it is widely accepted that human perception
plays an essential role in data analysis. With the increasing
volume and complexity of urban data, it is unlikely that
computer can take the place of human beings in a decision-
making process in the foreseeable future. It will be more
and more important to figure out an efficient way to involve
humans in the process of data analysis. Although visualiza-
tion provides a potential solution, it should not stand alone,
but should integrate seamlessly into the applications of
diverse domains. Thus, how to combine the advantages of
visualization and automated analytical approaches to estab-
lish more efficient methods for data analysis is crucial and
will be a hot subject for future research.
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