
StageMap: Extracting and Summarizing Progression Stages in Event Sequences

Yuanzhe Chen1, Abishek Puri1, Linping Yuan2, and Huamin Qu1

1Hong Kong University of Science and Technology
2Xi’an Jiaotong University

Abstract—Temporal event sequences are becoming increas-
ingly important in many application domains such as website
click streams, user interaction logs, electronic health records
and car service records. A real-world dataset with a large
number of event sequences of varying lengths is complex and
difficult to analyze. To support visual exploration of the data, it
is desirable yet challenging to provide a concise and meaningful
overview of sequences. In this paper, we focus on the stage,
that is, a frequently occurring subsequence in the dataset.
We introduce StageMap, a novel visualization technique to
summarize event sequence data into a set of stage progression
patterns. The resulting overview is more concise compared
with event-level summarization and supports level-of-detail
exploration. We further present a visual analytics system with
four linked views, which are overview, tree view, stage view
and sequences view. We also present case studies and discuss
advantages and limitations of applying StageMap to real-world
scenarios.

Keywords-time series data; data transformation and repre-
sentation; visual knowledge representation; visual analytics

I. INTRODUCTION

Temporal event sequences appear in a wide range of
domains such as website click streams, user interaction
logs in software applications, electronic health records and
car service records. Analyzing such data can help yield
meaningful insights and therefore support decision making.
For example, by analyzing user interaction logs, designers
can identify users who contend with usability issues and then
design interventions to improve user experience.

The first visualization techniques specific to event se-
quences aimed to visualize the entire set of sequences [1]–[4].
However, such techniques are unable to scale with the number
of sequences and the length of sequences. To remedy this
issue, other works have focused on visualizing a summarized
form of the data, thereby reducing the visual complexity of
their systems. Recent work in this area involved mining the
event sequences for frequent patterns and milestone events,
then displaying them in a visual system. Such systems use
established pattern mining models for this task. While such
techniques reduce the visual complexity of the system, they
have some key issues. First, such pattern mining models are
often optimized using an objective function which does not
take into account the visual form of the result. For example,
the mining model might generate redundant patterns, thereby
increasing the visual complexity of the system and potentially

confusing the users. Second, only events that match the
generated patterns are shown in the system, which means
all unmatched events are discarded. Discarding events can
mislead users about their data composition, thereby causing
erroneous conclusions to be drawn.

Other work incorporated stage-based analysis to summarize
the data. Stage-based analysis involves finding stages and
their progression patterns in the dataset. A stage is a grouping
of events, and the progression pattern of a stage is a sequence
of stages that begins with the aforementioned stage. For
example, in online learning click streams analysis, when
students try to finish an online assignment, they may first
browse the assignment, then review the course material and
then ask questions on the course forum. If many students
follow the same steps to finish the assignment, we can create a
stage of these three events. In this way, all learning behaviors
can be modeled as stages of the individual activities that form
that behavior. We then can see whether some behaviors follow
each other, i.e., whether stages are commonly seen after
one another. Such an observation would form a progression
pattern.

Visualizing sequences with stages and their progression
patterns has its benefits. Since a stage is also a subsequence
of events, the stage-based summary is, by definition, more
concise than the event-based summary. Such stages can also
contain high-level semantic information without increasing
the cognitive load on the user. However, providing a scalable
and meaningful visual summary for stage-based analysis is
still challenging due to the following reasons: First, real
world event sequence data often has thousands of distinct
sequences and hundreds of distinct events. This level of
complexity makes it difficult to extract an optimized set of
patterns. Second, in large scale data analysis, it is difficult to
directly drill down to individual sequences from the overview.
Therefore, it requires a technique which has the flexibility
to summarize progression patterns with different levels of
detail. In general, the main issues in this field are related to
the trade-off between limiting the loss of information and
decreasing the visual complexity of the system.

In this paper, we propose a system that uses a novel
implementation of stage-based analysis to create a visually
concise, yet lossless system. To the best of our knowledge,
this is the first work that attempts to tackle this problem
in this way. We propose StageMap, an event sequence

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 975

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

summarization method which presents sequences as a set of
visually optimized stage progression patterns. Our method
first extracts a set of frequently occurring stages, which
we use to transform the original sequences into a set of
progression patterns. We then model each progression pattern
into a tree structure, where each node in the tree is a stage.
The tree structure can aggregate similar stages and show
how each stage branches into different subsequent stages.
We then design a visual analytics system with four linked
views to support visual analysis of the summary. We further
test our method on real world datasets.

To summarize, the main contributions of this work include:
• A summarized representation of event sequences with

a set of stage progression trees.
• An algorithm which computes the visually optimized

progression trees.
• An interactive visual analytics system which allows

users to explore the summary of the data.

II. RELATED WORK

A. Event Sequence Summarization

There are work that model event sequences as tree
structures or graph structures. These approaches can be
considered as one way to summarize event sequences. The
complexity of the data is reduced by aggregating events of
the same type that occur at the same timestamp. However,
these methods are sensitive to individual variances among
sequences. Similar sequences may not be aggregated due to
small variances, which limits the usage of these methods.
Recently, CoreFlow [5] proposes an algorithm to extract the
tree structure with only high frequency events, which greatly
reduces the size of the tree. However, the low frequency
events are discarded in the resulting visual summary, which
may lead to missing insights in the data.

Sequence clustering can also aggregate similar sequences
and provide an overview of the data. LogView [6] uses
treemap to show the hierarchical clustering results of se-
quences. Wang et al. [7] propose a technique to support
unsupervised clustering and visualize the result with packed
circles. Wei et al. [8] use a self-organizing map to cluster and
visualize clickstream data. Many sequence summarization
methods can be transformed to a clustering problem, but
directly displaying the clusters is not suitable for visual
exploration since it is difficult to interpret the meaning of
each cluster.

There are also work that generate a visual summary based
on extracted frequent sequential patterns. TimeStitch [9]
applies sequential pattern mining models to medical care data
analysis and helps users to discover, construct and compare
cohorts. Both Frequence [10] and Peekquence [11] use the
frequent pattern mining algorithm and directly visualize
mined patterns to help users analyze the data. Furthermore,
a three-stage analytic pipeline [12] has been proposed to
identify and prune mined sequential patterns. Recently, Chen

et al. [13] propose a two-part representation to visualize
both the sequential patterns and the individual variances
with the help of Minimum Description Length principle. In
this paper, the concept of the progression stage is similar
to the sequential pattern. However, existing work do not
consider the sequential relations among stages which limits
the flexibility of presenting the inherent data structure.

Recently, EventThread [14] visualizes the stage progres-
sion patterns with storyline visualization. To the best of
our knowledge, it is the first work that focuses on stage
progression visualization. However, their use of stages is
static, as they create stages based on a constant time interval.
Our method, on the other hand, dynamically creates stages,
allowing for more control over the creation process of stage
representations of sequences, thereby giving more control
over the visual complexity of the data.

III. SUMMARY OF STAGE PROGRESSION FOR EVENT
SEQUENCES

A. Problem Statement

Our idea is to visualize event sequences by extracting a set
of stages and using this set to summarize the data into several
stage progression patterns. A stage is a frequently occurring
subsequence among the sequences and usually contains high-
level structures. Fig. 1(a) shows an example with four event
sequences (X1 to X4). Sequences can be represented as a
series of stages. Two representations are shown in Fig. 1(b).
To provide a concise and meaningful overview of the stages,
we identify a set of stage progression patterns. In Fig. 1(c),
the stage representation of sequences is converted into a tree,
showing the progression patterns. In real-world applications,
such as web clickstream analysis, these progression patterns
can reveal certain human behavior which is critical for the
analysis.

However, real world datasets are much more complex and
noisy. To identify the user requirements, we collaborated
with a group of experts in the field of online learning data
analysis, including an instructor (E.1) and a teaching assistant
(E.2) who wanted to improve their course design, as well as
an education researcher (E.3) who wanted to understand the
online learning behavior of the students. We collected the
requirements and concerns about the current analytic tools
from the experts. Based on the survey of existing works and
exploration of real world datasets of different application
domains, we further generalized the requirements of an
effective visual summary of event sequences. We summarized
three requirements as follows:

Minimizing visual complexity. Unlike existing pattern
mining models, the proposed model should also consider
the visual encoding of the summary and try to reduce visual
complexity. The example in Fig. 1 illustrates why the non-
visual based optimization can generate fragmented results.
For example, when using coverage-based optimization, i.e.,
trying to only minimize the number of unmatched events, the

976

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

Figure 1. An example to illustrate the stage progression pattern in event sequences. A set of event sequences (a) is broken into stages (b) using a visually
optimized covering (top) and a coverage optimized covering (bottom), resulting in two progression pattern representations for the original set of event
sequences (c).

set of sequences in Fig. 1 ends up producing two separate
trees A′ and A′′, while a visual-based optimization produces
just one tree A. Without incorporating visual complexity into
the cost function, when the dataset gets large, then the visual
space will become cluttered.

Dealing with unmatched events. Most of the previous
summarization methods discard the remaining events after
stage extraction. In domain specific tasks, discarding such
events risks misleading users. For example, in software
application log analysis, a rare but fatal error may be
discarded by the model but is important to the end users.
Therefore, in the visual summary, it is important to make
the users aware that there are addition events, and provide a
way for the users to access such events.

Supporting interactive analysis. When analyzing large
scale datasets, level-of-detail analysis is usually required to
allow users to drill down to details step by step. Therefore,
the model should be computationally efficient enough to
update the summary interactively.

B. Algorithm

The proposed algorithm for summarizing progression
patterns is called SPTree. Algorithm 1 describes the whole
algorithm pipeline, which consists of three subroutines, that
is, extracting stages, computing covers and building trees.

Taking the input sequences X, SPTree first generates a
set of stage candidates S which occur frequently in the
dataset. To this end, we employ VMSP [15], a technique
used for efficiently mining subsequences. We employ this
technique mainly because it introduces wildcards when
matching potential subsequences, which is consistent with our
idea of allowing addition events in each stage. Furthermore,
it runs faster than other approaches. We can set up a
constraint T hgap in VMSP to limit the maximum number of

Algorithm 1: SPTree
Input: sequences X= {X1,X2, ...,Xn}
Output: stage progression trees T = {T1,T2, ...,Tk}

1 initialize T = {X}, covering C= {X}, stage set Q= {};
2 stage candidates S=V MSP(X);
3 sortS(S);
4 while S 6= /0 do
5 pop Si from S;
6 for each X j ∈ X do
7 C j =Cover(X j,Q∪Si);
8 end
9 T∗ = BuildTrees(C);

10 if Cost(T∗)<Cost(T) then
11 T = T∗;
12 Q= Q∪Si
13 end
14 end
15 return T

wildcards when generating stages. Then, VMSP will identify
all the subsequences which have a frequency higher than a
predefined threshold T hsup. The resulting set of stages will
be the set of stage candidates.

Given this set of stage candidates, the algorithm will search
for a subset to construct the summary with. To do this, we
need a cost function to evaluate the visual complexity of
the visual summary, which is a set of trees. The proposed
cost function, which is inspired by a recent work [13], is
described in Eqn. 1:

Cost(T,C) = ∑
T∈T
{||node|||node ∈ T}+λ ||addition|| (1)

977

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Statistics on two real-world datasets. The running time of StageMap is reported and compared with two sequence summarization techniques.

The two terms in Eqn. 1 correspond to the main visual
elements in the summary, that is, the number of nodes in the
trees and the number of addition events, respectively. The
parameter λ is introduced to balance the importance of the
two terms.

Given the cost function, a straightforward way to find the
optimal set of stages is to search through all the combinations
of stage candidates, and use the combination with the
smallest cost to generate the result. However, this method
has an exponential time complexity with respect to the stage
number, i.e., O(2|S|), making the computation too slow to be
practically useful. To avoid this issue, SPTree uses a heuristic-
based approach. Our heuristics involve favoring stages that
are more frequent as well as of a longer length. We do this
because, intuitively, the more frequent or longer a stage is,
the more likely it is to reduce the visual complexity of the
data. Therefore, the algorithm first sorts (subroutine sortS)
the candidates by the multiplication of their frequency and
length, then iteratively updates the summary by adding more
stages from the sorted candidates. In this way, the algorithm
becomes linear with respect to the stage number,i.e., O(|S|).
This is the core subroutine of SPTree.

In each iteration, the algorithm takes two steps (Cover
and BuildTrees) to construct a summary with the updated set
of stages. In the first step, the algorithm needs to determine
where each stage is used, so as to encode a sequence, and
where the wildcards occur. For each stage candidate Si, the
subroutine Cover replaces all occurrences of this stage with
the symbol Si. Then, the covering of the dataset can be
generated by running Cover over each sequence in the dataset.
To accelerate the algorithm, the matchings between stages and
sequences can be stored as a lookup table when employing
VMSP, so Cover only needs to check cells in the table. In
the result of Cover, there will be a sequence of stages (the
Cover) but there will also be some events that were not
matched in the earlier step. These events are the addition
events. Events that are matched in the earlier step are called
matched events.

In the second step, SPTree builds a summary given the
updated covering. After all the iterations finish, the summary
with the smallest cost will be returned as the final result.
Since we try to build a visual summary which highlights
the branching patterns between stages, we construct the
visual summary as a set of trees with each stage as a node.

However, our algorithm can be readily adapted to construct
other structures, as such a change would only apply to our
BuildTrees Subroutine. (i.e., line 9 in Algorithm 1).

Parameter settings. There are three parameters (T hsup,
T hgap and λ) that need to be set for the algorithm. T hsup, the
frequency threshold for VMSP, ranges from 0 to the number
of sequences n. Its value cannot be too large, as this would
result in a large number of stages being discarded by VMSP.
However, if the value is too low, then the computation time
becomes significantly longer. T hgap ranges from 0 to the
maximum length of sequences. Increasing the value of T hgap
allows a more flexible stage extraction of VMSP, however,
increases the computation time. λ is used to balance the
importance of patterns and additions, and ranges from 1 to
the maximum length of sequences. In our experiments, we
run the algorithm with different parameter settings. Based
on the results, we set T hsup to 0.1∗n, T hgap to 1 and λ to
0.1.

Running time. We further evaluate the running time of
the proposed method. To effectively compare our results to
a baseline implementation, we build a baseline algorithm
(Base). This algorithm computes a covering of the dataset
in a similar way to SPTree, except it does not prune the
set of stage candidates given by VMSP, so it will choose
the covering which minimizes noise, making it a coverage
optimizing algorithm.

Fig. 2 reports the running time for both datasets with
the fixed parameters, and compare with Base and a recent
sequence summarization technique called Sequence Synop-
sis [13]. From the results, we can see that SPTree needs more
time to compute the optimized summary as compared to Base.
However, SPTree is faster than the Sequence Synopsis.

IV. VISUALIZATION

A. Visual Encoding

Fig. 3 shows the system overview of StageMap. The system
consists of four linked views, which are overview, tree view,
stage view and sequences view.

1) Overview: As shown in Fig. 3(b), the overview directly
takes the summary T as input and shows the overview.
Since the summary T contains a set of trees, we present
the summary with a space-filling representation and employ
the treemap algorithm Nmap [16] to compute the layout.
Inside each node of the treemap, we visualize these trees

978

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

Figure 3. A screenshot of the StageMap visualization system applied to application log analysis. Our system includes four views: a stage view (a)
displaying the extracted stages, an overview (b) showing the structure of each progression pattern, a tree view (c) showing the progression patterns of
similar sequences with an icicle plot and a sequences view (d) listing each individual sequence. The usage case of this figure is described in Section V.

with icicle plots as long as the area of the node is large
enough, otherwise we leave the node empty.

In the stage map, the area of each rectangle in the treemap
encodes the number of sequences that match the progression
pattern up to that rectangle. To fit the icicle plot inside the
rectangle, we calculate an aspect ratio for each tree according
to its depth and breadth. We then extend Nmap to generate
a layout where each node has an aspect ratio close to the
ratio of the tree in that node.

Inside an icicle plot, each rectangle represents a stage. In
a traditional icicle plot, nodes in the same row have the same
depth. However, in event sequences, the depth of a node
encodes temporal information, which is normally visualized
in a horizontal axis. Therefore, we rotate the icicle plot, so
that nodes in the same column have the same depth. The
height of each rectangle represents the frequency of that stage.
Within the same column, we can rank the nodes by their
frequency, timestamp of the first occurrence or the number
of addition events. Here we choose not to encode the type
of stages with different color. Instead, we save this visual
channel to encode the type of events in other views.

Since we prefer to provide only high-level statistics of
addition events to avoid information overload, we compute an
addition ratio for each stage and visualize it with a sequential
color scheme. The addition ratio is defined as:

Rvariant =
1

1+ |addition|
|S|

(2)

where |addition| is the total number of addition events,
and |S| is the total number of events in the sequences.

2) Tree View: The tree view (Fig. 3(c)) displays a user
selected node in the treemap and provides more details as
compared to the overview. We again use the icicle plot to
reduce the cognitive gap between the tree view and the
overview. Inside each node of the plot, we fill the space with
a stage glyph to show the composition of a stage and the
addition events.

A stage glyph’s constituent events are encoded as rectan-
gles. We use a categorical color scheme to represent the event
type. When the dataset consists of a large number of event
types, the color scheme is used to encode the top 12 frequent
occurring events, with the remaining events are encoded with
a grayscale color. Users can also check the event type using
the label in the rectangle or the tooltip. This color encoding
is consistently used across the system. Besides, the users can
also expand a subtree through interaction.

3) Sequences View: The sequences view is designed to
aid the detailed analysis of each sequence. Within the view,
each sequence is horizontally visualized as a chain of events,
where each event is represented as a circle. The color and
size of the circle represent the event type and whether the
event is matched or not respectively. With respect to the
size, there are two sizes; large and small. Large represents
matched events while small represents addition events.

4) Stage View: The stage view vertically displays all the
stages in the system sorted by frequency, with the highest
frequency stage situated at the top of this view. In each row
of this view, we first display the frequency with a bar chart,
after which we display the name of the stage followed by
the component events of the stage. This view provides users
a high level summary of the stages in the data and aids the

979

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Two progression patterns in the Agavue Sample dataset. (a)
shows the largest tree which starts with initialization of the application, and
(b) shows the tree which starts with an error message of the application.

users in narrowing down their sequences of interest.

B. Interaction

To allow users to explore the data from various perspectives
and enable level-of-detail analysis, StageMap is augmented
with interactive techniques. Common interactions in event
sequence visualization such as linked-highlighting, ranking,
querying and tooltips are supported in our system. To allow
the users to drill down to the summary of a subset of
sequences, we designed two details-on-demand interactions to
explore the visual summary. First, users can expand a node in
the treemap. Second, users can query an event either in stages
or in sequences. We believe these interaction techniques can
help to demonstrate the effectiveness of the proposed visual
summary. However, other interaction techniques can be easily
embedded as needed.

V. USAGE SCENARIO

In this section, we present results from a usage scenario
with real world dataset. The statistics of the dataset are
shown in Fig. 2. We implement the system as a web-based
application and conduct interviews with domain experts.

In our usage scenario, we applied StageMap to Agavue
Sample dataset. The dataset records user interactions in a
data visualization application, where users try to generate
visualizations such as bar charts and treemaps. The analyst

aimed to understand users behavior with the main goal of
being to improve usability. The insights gained from the
analysis can help the analyst to improve the UI design to
ensure a smooth experience.

The analyst first loaded the data, after which he started the
analysis by looking at the overview (Fig. 3(b)). In total there
were 11 nodes of varying size in the overview. To first get a
sense of what most users do, the analyst clicked on the largest
node, i.e., the one with the highest number of represented
sequences. This interaction updated the tree view, which now
displayed an icicle plot showing all the progression patterns
for the root stage of this tree (Fig. 4(a)), which turned out to
be the stage [create, appInit, resize, resize]. The analyst, as
a domain expert, knew that this corresponds to the starting
of the application, so it was expected that this would be a
common starting stage.

The analyst now looked at the progression patterns of
this stage. One progression path had the stage [error,
errorCloseBox], now referred as error stage, right after the
root stage. The analyst knew that this meant that the system
had thrown an error message. Using the tooltip, he saw that
18.5% of all sequences in this subtree were in this progression
pattern. This was a key observation that the analyst noted,
as he mentioned that this indicated there were some issues
with how they explained the creation of an app.

Having noticed this error-causing issue, the analyst now
wanted to further investigate the occurrence of the error stage.
In particular, he wanted to know when users experienced
errors at the beginning of their sessions. To do this, he went
to the stage view and used our querying feature to find all
stages that contained errors. After this query was processed,
only the error stage was shown. Using the linked-highlighting
feature, he identified the corresponding node in the overview
and clicked it, updating the tree view (Fig. 4(b)).

Upon looking at the icicle plot, he first noticed that the
two largest non-error addition events before the root stage
were slider (orange color) and resize (creme color). As these
were common events, the analyst wanted to see in detail
what happened in those sessions. To do this, he looked at
the sequences view, which had automatically updated to only
show the sequences represented in the tree view. He noticed
that sessions with a long chain of slider events (orange circles)
ended up having an error. The analyst mentioned it as further
improvements of the design.

Overall, the analyst was able to use the system to do a high
level analysis of the sequences, after which he could focus
on a specific point of interest. The benefit of our system is
the ability to seamlessly switch from a high-level summary
of all sequences via the overview to a focused analysis of
a particular stage or event. More importantly, the fact our
system keeps all events without discarding allows the analyst
to see the buildup to and aftermath of a stage, increasing the
amount of information that can be garnered without a large
increase in complexity. In other systems, such a task involves

980

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

going back to the raw data to investigate what happens around
a pattern, which is a significantly more complex task.

VI. CONCLUSION

In this paper, we presented a novel approach for analysts
to explore event sequence data by visualizing the data with a
set of stage progression patterns. First, we proposed a novel
algorithm to compute the optimized summary of the data.
We then proposed a comprehensive visual analytics system
which takes the computed summary as input. Our system
supports levels-of-detail data exploration. We also conducted
case studies to demonstrate the effectiveness of our approach.
The limitations of our work were finally summarized, with
a discussion of future research directions. In the future, we
also plan to extend the tree structure and VMSP to further
improve the scalability and time efficiency of our approach.

ACKNOWLEDGMENT

We would like to thank all the reviewers for their valuable
comments. This project is partially supported by RGC GRF
16213317.

REFERENCES

[1] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneider-
man, “Lifelines: visualizing personal histories,” in Proceedings
of the SIGCHI conference on Human factors in computing
systems, pp. 221–227, ACM, 1996.

[2] M. Krstajic, E. Bertini, and D. Keim, “Cloudlines: Compact
display of event episodes in multiple time-series,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17,
pp. 2432–2439, Dec 2011.

[3] J. Zhao, C. Collins, F. Chevalier, and R. Balakrishnan,
“Interactive exploration of implicit and explicit relations in
faceted datasets,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 12, pp. 2080–2089, 2013.

[4] T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Rose-
man, G. Marchand, V. Mukherjee, and M. Smith, “Temporal
summaries: Supporting temporal categorical searching, aggre-
gation and comparison,” IEEE transactions on visualization
and computer graphics, vol. 15, no. 6, 2009.

[5] Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, and
A. Wilson, “Coreflow: Extracting and visualizing branching
patterns from event sequences,” in Computer Graphics Forum,
vol. 36, pp. 527–538, Wiley Online Library, 2017.

[6] A. Makanju, S. Brooks, A. N. Zincir-Heywood, and E. E.
Milios, “Logview: Visualizing event log clusters,” in Privacy,
Security and Trust, 2008. PST’08. Sixth Annual Conference
on, pp. 99–108, IEEE, 2008.

[7] G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao,
“Unsupervised clickstream clustering for user behavior analy-
sis,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, pp. 225–236, ACM, 2016.

[8] J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma, “Visual cluster
exploration of web clickstream data,” in Visual Analytics
Science and Technology (VAST), 2012 IEEE Conference on,
pp. 3–12, IEEE, 2012.

[9] P. J. Polack, S.-T. Chen, M. Kahng, M. Sharmin, and D. H.
Chau, “Timestitch: Interactive multi-focus cohort discovery
and comparison,” in Visual Analytics Science and Technology
(VAST), 2015 IEEE Conference on, pp. 209–210, IEEE, 2015.

[10] A. Perer and F. Wang, “Frequence: interactive mining and
visualization of temporal frequent event sequences,” in Pro-
ceedings of the 19th international conference on Intelligent
User Interfaces, pp. 153–162, ACM, 2014.

[11] B. C. Kwon, J. Verma, and A. Perer, “Peekquence: Visual
analytics for event sequence data,” in ACM SIGKDD 2016
Workshop on Interactive Data Exploration and Analytics, 2016.

[12] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and
A. Wilson, “Patterns and sequences: Interactive exploration
of clickstreams to understand common visitor paths,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23,
no. 1, pp. 321–330, 2017.

[13] Y. Chen, P. Xu, and L. Ren, “Sequence synopsis: Optimize
visual summary of temporal event data,” IEEE transactions on
visualization and computer graphics, vol. 24, no. 1, pp. 45–55,
2018.

[14] S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao,
“Eventthread: Visual summarization and stage analysis of
event sequence data,” IEEE transactions on visualization and
computer graphics, vol. 24, no. 1, pp. 56–65, 2018.

[15] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng,
“VMSP: Efficient vertical mining of maximal sequential
patterns,” in Canadian Conference on Artificial Intelligence,
pp. 83–94, Springer, 2014.

[16] F. S. Duarte, F. Sikansi, F. M. Fatore, S. G. Fadel, and F. V.
Paulovich, “Nmap: A novel neighborhood preservation space-
filling algorithm,” IEEE transactions on visualization and
computer graphics, vol. 20, no. 12, pp. 2063–2071, 2014.

981

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 03,2020 at 06:30:41 UTC from IEEE Xplore. Restrictions apply.

