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DATA ANALYTICS AND VISUALIZATION
APPROACHES FOR ONLINE LEARNING OF
MATH AND COMPUTATIONAL THINKING

ABSTRACT

With online education becoming popular in the past decades, there has been an in-

creasing number of online learning platforms that provide students with online questions

to cultivate their problem-solving skills. For example, various MOOC platforms (e.g.,

Khan Academy) and online question pools (e.g., LeetCode, LearnLex) offer interactive

intellectual and programming exercises. However, the enormous learning resources and the

lack of educators in the online learning settings make it hard for students to achieve per-

sonalized learning. There are two major challenges for people to remove these obstacles.

The first is how to collect students’ fine-grained behavior data during the problem-solving

process. The second is to utilize the collected data to infer students’ cognitive state in

the dynamic problem-solving process and further solve downstream tasks, such as student

learning performance prediction and personalized learning path recommendation.

In this white paper, we introduce a general way to collect students’ fine-grained mouse

movement data during their problem-solving process. Based on the data collected, we

analyze the detailed problem-solving sequences. First, we propose QLens, a visual ana-

lytics system to help question designers analyze students’ problem-solving behaviors in

multi-step questions to improve question design at a micro-level. Second, we design,

SeqDynamics, another visual analytics system to evaluate students’ problem-solving dy-

namics among a series of questions from both cognitive and non-cognitive perspectives at

a macro level. Third, we extract the interaction features from students’ mouse movement

trajectories and develop advanced deep learning algorithms (i.e., GNN) to predict their

performances on any given questions. Furthermore, we try to improve their self-learning

skills by proposing PeerLens, an interactive visual analytics system that enables peer-

inspired learning path planning and visual interventions to regulate their problem-solving

behaviors. We conduct extensive quantitative evaluations, such as case studies, user stud-

ies, and expert interviews, to demonstrate the effectiveness and usefulness of our proposed

data analytics and visualization approaches.
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CHAPTER 1

INTRODUCTION

With online education becoming increasingly popular in the past decades, various online

learning platforms have been developed to provide students with all kinds of learning

materials, including online exercises. For example, various MOOC platforms (e.g., Khan

Academy), online question pools (e.g., LeetCode, LearnLex), and intelligent tutoring sys-

tems (e.g., SimStudent) offer interactive maths questions and programming exercises (Xia

et al., 2019a). Compared with traditional learning, students can access these learning ma-

terials more flexibly and conveniently. However, the huge amount of learning resources

and the imbalance in the number of educators and students make it challenging for stu-

dents to achieve personalized learning. In this white paper, we attempt to bridge the gap

between educators and students in students’ problem-solving behaviors.

Problem-solving processes can reflect students’ cognitive abilities as well as noncogni-

tive traits. Cognitive skills refer to the core skills that the brain uses to think, read, learn,

remember, reason, and pay attention, while noncognitive traits and behaviors refer to spe-

cific characteristics such as motivation, conscientiousness, perseverance, self-regulation,

and collaboration (Farkas, 2003). In the online problem-solving scenario, for educators

and question designers, they need to understand students’ problem-solving logic when

solving a multi-step question and their learning habits when solving a series of questions.

With a deep understanding of students’ learning habits and problem-solving behaviors,

they can improve question designs and give customized instructions to student groups

with different cognitive abilities and non-cognitive traits. Meanwhile, students on on-

line learning platforms need to enhance their self-learning skills, such as learning paths

planning and learning habits regulation.

However, two challenges are encountered when educators and question designers are

trying to handle the above tasks in online learning platforms. The first is how to collect

students’ fine-grained behavior data during the problem-solving process. The second is

how to utilize the data to infer students’ cognitive state in the dynamic problem-solving

process and further solve downstream tasks (e.g., student performance prediction and per-

sonalized learning paths planning). For example, each learner’s problem-solving behav-

iors, is ultimately multi-dimensional time-series data and how to represent and interpret

such data with meaningful semantics (i.e., cognitive and non-cognitive traits and behav-

iors) is non-trivial; summarizing students’ problem-solving dynamics in different levels of
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details to facilitate convenient comparison can be difficult; mining and representing peers’

learning data to assist students to regularize their learning behaviors and better plan their

online learning is hard to achieve.

With the sponsor from Innovation and Technology Fund of HKSAR (Project No.:

ITS/388/17FP) and our industry collaborator, Trumptech (Hong Kong) Ltd, we conduct

a series of research on students’ problem-solving process in online learning. Fig. 1.1 pro-

vides an overview of our research on employing data analytics and visualization techniques

to facilitate online learning, which mainly consists of three modules. The first module

is data collection, which introduces a general way to collect students’ fine-grained mouse

movement data and submission records in the problem-solving process. Based on the

data collected, the second module is the problem-solving analysis and its evaluation. It

analyzes the detailed problem-solving sequences, extracts the interaction features from

students’ mouse movement trajectories to predict students’ performance, and further as-

sists students in path planning and behavior regulation. In particular, two visual analytics

systems, QLens and SeqDynamics, are proposed to analyze students’ problem-solving be-

haviors at a micro-level (multi-step within questions) or at a macro level (among a series

of questions), respectively. Moreover, student mouse movement interaction features and

new GNN models are proposed to predict students’ performance on any given question.

The third module is evaluation, where we conduct various quantitative assessments, case

studies, user studies, and expert interviews to demonstrate the effectiveness and useful-

ness of our proposed data analytics and visualization approaches. Table 1.1 lists the

publications in this white paper.

Figure 1.1: The framework of the white paper contains three modules. Data collection
module collect students’ fine-grained mouse movement data. Data analytics & evaluation
module introduces and evaluate visual analytic systems to analyze students’ problem-
solving processes, advanced machine learning techniques to predict students’ performance,
and visual interventions to assist students’ learning path planning and self-regulation.
Techniques release module publishes the github repositories and the project page.
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NO. Title Venue Section

1 Visual Analytics of Student Learning Behaviors on K-12 Mathematics E-learning Platforms
IEEE VIS 2019
(poster)

2.2.1

2 QLens: Visual Analytics of Multi-step Problem-solving Behaviors for Improving Question Design IEEE VIS 2020 2.2.1
3 SeqDynamics: Visual Analytics for Evaluating Online Problem-solving Dynamics Euro VIS 2020 2.2.2

4 Predicting Student Performance in Interactive Online Question Pools Using Mouse Interaction Features
Learning Analytics
& Knowledge 2020

2.3.1

5 Peer-inspired Student Performance Prediction with Graph Neural Network CIKM 2020 2.3.2

6 PeerLens: Peer-inspired Interactive Learning Path Planning in Online Question Pool CHI 2019 2.4

7 Using Information Visualization to Promote Students’Reflection on“Gaming the System”in Online Learning
Learning @ Scale
2020

2.5

Table 1.1: Our publication list in this white paper.
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CHAPTER 2

OUR METHODS

2.1 Data Collection

2.1.1 Mouse Movement Data Collection

We design and implement a general interaction data collection technique which could be

applied in different platforms. Its implementation logic is shown in Fig. 2.1.

Figure 2.1: Framework of interaction data collection.

Figure 2.2: Mouse movement data format

Fig. 2.2 is a format example of our collected data and it shows all dimensions of

the data, such as the trajectories and the drag/click actions of the mouse, user login

4



time/frequency, user average scores and time spent on questions. These data dimensions

are visualized in various forms for learning behavior analysis. The analysis can help the

instructors as well as the users to better understand the learning behaviors and patterns,

so as to improve the design of lecture materials and the learning efficiency accordingly.

2.1.2 Submission Data Collection

Apart from the mouse movement data, we required students’ submission data from an E-

Learning platform, which format is shown in Fig. 2.3. The dimensions of the submission

data contain the submission ID, student ID, questions ID, score, and the submission

time, which give us a baseline about students’ performance and could be used as labels

to predict students’ future performance.

Figure 2.3: Submission data format

2.2 Problem-solving Sequence Analysis

2.2.1 QLens: Problem-solving Sequence Analysis within Multi-
step Questions

There has been an increasing number of learning platforms that provide students with

multi-step questions to cultivate their problem-solving skills. To guarantee the high qual-

ity of such learning materials, question designers need to inspect how students’ problem-

solving processes unfold step by step to infer whether students’ problem-solving logic

matches the design intents of the questions. They also need to compare the behaviors of

different groups (e.g., students from different grades) to distribute questions to students

with the right level of knowledge. The availability of fine-grained interaction data, such

as mouse movement trajectories from the online platforms, provides the opportunity to

analyze problem-solving behaviors. However, it is still challenging to interpret, summa-

rize, and compare the high dimensional problem-solving sequence data. In this chapter

we present a visual analytics system, QLens, to help question designers inspect detailed

problem-solving trajectories, compare different student groups, distill insights for design

improvements.
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Figure 2.4: The alpha version of QLens. (a) Overview of the problem and the heat map
shows the problem-solving interaction data; (b) Transition map view reveals the detailed
problem-solving steps; (c) Data analytics view displays the correlation between learning
attributes and learning performance;(d) Control panel offers the function to adjust the
parameters of Region of Interests (ROIs).

Alpha Version of QLens

The system shown in Fig. 2.4 is the alpha version of QLens. In the alpha version, we first

extract the regions of interests according to the density of students’ mouse movements

trajectories (Fig. 2.4a) and then use the transition map to represent in which order and

frequency a student interacts with different regions of interests.

As for the transition map in Fig 2.5, regions with intensive interactions are extracted as

ROIs and visualized through pie charts connected by arcs according to mouse movement

streams to form a transition map. The size of the pie charts represents the number of

interactions over the ROIs; the color of the arcs and sectors represents the time order.

In this way, the map reveals students problem-solving steps. We can see that the third

and fourth pie at the bottom are larger than others and the lines between them are much

thicker, which means large amounts of transitions between these two ROIs. This transition

map can be used to summarize a group of students’ behaviors and also to compare the

transition maps of two students or two groups of students’ problem-solving behaviors.
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Figure 2.5: The transition map demonstrates the detailed problem-solving steps with
event types and time information.

More details can be referred in the paper (Xia et al., 2019b).

Problem-solving Behavior Modeling

Figure 2.6: (a) An example of interactive question. (b) The solution of (a).

To further reflect the problem-solving logic, engagement level, and difficulties students

encountered and facilitate further visualization tasks, we use a hybrid state Markov Chain

to model students’ problem-solving behaviors (Abate et al., 2008). Before introducing the

detailed problem-solving behavior modeling, we first define the following terms as below:

• Intermediate answer: the answer a student fills in blanks at a step. For example,

for the Fig 2.6a question, 6, null, null, null, null, null is an intermediate answer.

• Condition: one criteria that students need to fulfill to get part of the score. For

example, in Fig 2.6a, placing one of the six digits in the correct position accounts

for one condition being satisfied.
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• Condition array: a string consisting of 0 and 1 to indicate whether a set of con-

ditions are fulfilled or not. The length of the string is the number of the conditions.

For example, the length of the question in Fig 2.6a is six.

• Step: the result of an action (e.g., deletion, insertion, exchange or translation) that

a student makes to change his/her answer.

• Stage: the number of conditions the current answer fulfills. For example, for the

Fig 2.6a question, 6, null, null, null, null, null fulfills one condition at Stage one.

• Time elapse: the time period between the time a student starts to solve the

problem and the time he/she reaches a certain step.

• Trajectory length: the length (pixels) of the cursor moving on screen from the

time student starts to solve the problem to the time he/she reaches a certain step.

Based on the above definitions, State (S) is modeled as a two-level hybrid structure:

• Level1: {Step, Stage} + {Condition array, Time elapse, Trajectory length}

• Level2: {Intermediate answer}

For a particular student, the change of the conditions satisfied along the way can

reflect the problem-solving logic. If a student’s stage cannot steadily go up as the step

continues (e.g., the stage remains the same for several steps or drops continuously), it

may indicate that the student encounters difficulties, as suggested by the domain experts.

Data-driven Feedback Construction

As required by domain experts, they need to evaluate the feasibility of using existing data

to provide data-driven feedback to guide students’ problem-solving process. When con-

structing data-driven feedback, the basic idea is to recommend the paths conducted by

students who can correctly solve the question to students who cannot. We implemented a

popular path recommendation algorithm based on the path similarity applied in previous

research (Du et al., 2016) (Xia et al., 2019a). More specifically, for a student who sub-

mitted an incorrect answer, we find all the problem-solving paths (1) that fulfill all the

conditions at the end and (2) whose states cover the final states resulting the incorrect

answer. If more than one path satisfies this constraint, then we rank them according to

their similarities with the current path. The similarity is calculated by the total steps,

the total time, and the total trajectory length. Finally, we recommend the solution path

with the highest similarity.
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Visual Design

Figure 2.7: QLens enables question designers to analyze students’ multi-step problem-
solving behaviors for design improvements from levels of detail.

We present a novel visual analytics system QLens to accomplish the aforementioned

tasks. This system can aid educators and question designers in exploring, analyzing, and

understanding the problem-solving processes of students in multi-step questions. The

visual analysis module of QLens incorporates the following three views. 1) Overview,

as shown in Fig. 2.7a, displays basic information about the students, which includes

the background of students, score distribution, time spent by students and information

about common errors. 2) Transition View, as shown in Fig. 2.7b, intuitively visual-

izes the steps and stages involved in solving a problem which help in understanding the

different approaches and problem-solving logic that the students apply in order to solve

the problem. This view also displays the data-driven recommended paths of common

errors for question designers to evaluate the feasibility for providing data-driven feed-

back. 3) Comparison View, as shown in Fig. 2.7c, facilitates a detailed comparison of

the problem-solving process of two or more groups of students based on users’ selection.

Moreover, a collection of interactions, such as filtering, highlighting, and tooltips, is also

available for the users to explore the dataset freely.

Transition View

The Transition View (Fig. 2.7b) aims to provide a holistic view of the multi-step

problem-solving behavior to reflect students’ problem-solving logic, engagement, and dif-

ficulties encountered and has three parts: control panel (Fig. 2.7b1), transition graph

(Fig. 2.7b2), and engagement chart (Fig. 2.7b3).
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Figure 2.8: The enlarged part of the transition graph in Fig. 2.10b2

Figure 2.9: The contextual line chart with dual axes. The upper line chart shows the
average time spent (seconds) on each step and the lower shows the trajectory length of
the cursor (pixels) on each step. Lines of different colors represent different groups.

Control Panel, as shown in Fig. 2.7b1, provides filter options to facilitate exploration.

The leftmost filter enables question designers to select a single student and analyze his/her

problem-solving path. The middle filter filters the transitions less than a certain number

and makes the common path appealing. It also incorporates a navigation bar to provide

question designer an overall impression of the length of total steps students take by

highlighting the current page using a red rectangle.

Transition graph, as shown in Fig. 2.8, intuitively visualizes how a group of students

fulfill a set of conditions step by step in order to reach the final answer (i.e., the problem-

solving logic). The x-axis represents the step and a student makes a step when he/she

changes the answer by deleting/inserting/exchanging/translating element(s). The y-axis

represents the stage, where the stage is the number of conditions fulfilled in each step.

For example, if a student has a sequence starting with (null, null, null, null, null, null),

(6, null, null, null, null, null), he/she moves from Fig. 2.8a (Step zero, Stage zero) to

Fig. 2.8b (Step one, Stage one). By placing 6 in the correct position, one condition is

fulfilled. A student moves to a higher stage only when one or more conditions are satisfied

otherwise the students remains in the same stage or drops to a lower stage if he/she breaks

one or more condition(s) no matter how many steps he/she makes. The transition lines

between the glyph show the number of students going from one state (step, stage) to

another. For example, as shown in Fig. 2.8a, all students fulfill zero conditions at the
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beginning. The 33 students (Fig. 2.8c) move from Stage zero (zero conditions fulfilled) to

Stage one (one condition fulfilled) at the second step. By hovering the mouse to the glyph,

we can check the details like the number of students fulfilled each condition (Fig. 2.8d).

Engagement Chart (Fig. 2.9) shows the efforts students pay on each step when

solving the question. It consists of a dual-axis line chart (top and bottom). The upper

line chart shows the average time spent in seconds on each step, and the lower line chart

shows the trajectory length of the cursor in pixels in each step. This contextual line chart

helps users in understanding how much effort the students make or how much they engage

in solving the problem based on the time spent and the interactions. When one or more

subgroups are selected, a line with a different color is added to show the average time and

interaction in each step of that particular group. In Fig. 2.9, the light blue line represents

students fulfilling zero conditions and the orange line represents students fulfilling all the

six conditions. We can see that students got zero score actually exert more efforts for

each step.

2.2.2 SeqDynamics: Problem-solving Sequence Analysis among
Multiple Questions

Problem-solving dynamics refers to the process of solving a series of problems over time,

from which a student’s cognitive skills and non-cognitive traits and behaviors can be

inferred. For example, we can derive a student’s learning curve (an indicator of cogni-

tive skill) from the changes in the difficulty level of problems solved, or derive a stu-

dent’s self-regulation patterns (an example of non-cognitive traits and behaviors) based

on the problem-solving frequency over time. Few studies provide an integrated overview

of both aspects by unfolding the problem-solving process. In this paper, we present a

visual analytics system named SeqDynamics that evaluates students’ problem-solving dy-

namics from both cognitive and non-cognitive perspectives. The system visualizes the

chronological sequence of learners’ problem-solving behavior through a set of novel vi-

sual designs and coordinated contextual views, enabling users to compare and evaluate

problem-solving dynamics on multiple scales. We present three scenarios to demonstrate

the usefulness of SeqDynamics on a real-world dataset which consists of thousands of

problem-solving traces. We also conduct five expert interviews to show that SeqDynamics

enhances domain experts’ understanding of learning behavior sequences and assists them

in completing evaluation tasks efficiently.
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Establishing Problem-Solving Attributes

We establish problem-solving attributes from both the cognitive and non-cognitive per-

spectives. Based on previous research (Ausubel et al., 1968) and domain experts’ sug-

gestions, we consider three learning attributes to evaluate individual’s cognitive skills:

the number of problems solved (l1), the percentage of hard problems solved (l2), and

the diversity of problems solved (l3). In addition, we consider three learning attributes

related to noncognitive traits and behaviors: diligence, willingness to take on challenges,

and perseverance. Previous research (Farkas, 2003) summarized a series of non-cognitive

skills from two aspects, conscientious work habits (e.g., perseverance, discipline) and other

personality traits (e.g., opening to new experience, aggressive, etc). The roles of those

skills in schooling and employment outcomes had been examined. We discussed these

attributes one by one with domain experts to check how they are valued and measured in

our scenario. We concluded that the total number of submissions (l4) can reveal whether

a student has expended effort on the programming platform, which we recognize as dili-

gence. The time starting to solve hard problems (l5) shows when a student has adapted

to the learning process and is confident enough to try new problems. This indicates one’s

willingness to take on challenges and is highly emphasized by the experts when selecting

the best candidates. l6, calculated by #(active days)/ #(days after registration), uncovers

a student’s ability from the time perspective, which we called perseverance, to differen-

tiate good candidates from other students who attempt many problems with enthusiasm

only over a short period.

Problem Difficulty and Learner Ranking

According to domain experts (E1, E2), problem difficulty is a key feature in our context

when evaluating and selecting learners, based on which the students’ ranking is defined.

The current method of determining the rank of a learner is purely based on the number

of problems he/she solves (Revilla et al., 2008). However, a student who solves ten easy

questions is different from a student who solves ten difficult ones. Inspired by the ELO

ranking algorithm used in areas (e.g., chess, education, work allocation) to define the rel-

ative ranking dynamically (George Trimponias & Yang, ) (Molenaar et al., 2019) (Good-

speed, 2017), we modify it to calculate the learner ranking. The detailed ranking method

can be found in paper (Xia et al., )

Visual Design

We present a novel visual analytics system for instructors to evaluate the problem-solving

dynamics and select the best candidates from the candidate pool. The visual analysis
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Figure 2.10: SeqDynamics facilitates the evaluation of learners’ problem-solving dynamics
via levels of analysis: (a) Ranking View displays the overall performance (macro level),
(b) Projection View plots a subset of learners with key learning attributes (meso level), (c)
Evolution View and (e) Comparison/Cooperation View magnify the details of a problem-
solving sequence unfolded over time (micro level). Correlation View (d) displays the
correlation of different learning attributes with the performance ranking and enables users
to customize the weights.

module of SeqDynamics includes: 1) Ranking View (Fig. 2.10a) that displays an over-

all distribution of the learners’ scores and ELO ranking in an ascending order (macro);

2) Projection View (Fig. 2.10b) and Correlation Panel (Fig. 2.10d) that facilitate

instructors to customize their own evaluation criteria and compare the synoptic problem-

solving features of a subset candidates on a 2D canvas. 3) Evolution View (Fig. 2.10c)

that expands the selected learners’ problem-solving features over time for detailed inspec-

tion (micro); 4) Comparison/Cooperation View (Fig. 2.10e) that facilitates explicit

comparisons of two problem-solving sequences and demonstrates the complementarity of

two learners. A collection of interactions, such as querying, highlighting, tooltips, and

brushing, is also available for users to explore the dataset freely. More details can be

referred in the paper (Xia et al., ).
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2.3 Problem-solving Outcome Prediction

2.3.1 Predicting Student Performance in Interactive Online Ques-
tion Pools Using Mouse Interaction Features

We propose a novel method by introducing a set of new features based on interactions

between students and questions to predict student performance in interactive online ques-

tion pools. The mouse movement trajectories, which consist of the mouse interaction

timestamp, mouse event type and mouse coordinates, are basic factors in prediction and

represent the problem-solving path of a student for each question. Inspired by prior re-

searchers in education and psychology fields (Stahl, 1994; Row, 1974), which shows that

student’s “think” time on questions affect their performance, we propose a set of novel

features (e.g., think time, first attempt, first drag-and-drop) based on mouse movement

trajectories to predict student performance in interactive online question pools.

We define the time between when students see the question and the time that they start

solving the questions as the “think time” and also extract attributes related to the first

attempt and first drag-and-drop. Further, since there is no predefined question order in

interactive online question pools, we apply a heterogeneous information network (HIN) to

calculate the similarity among questions and incorporate students’ problem-solving history

to enhance performance prediction. We evaluated our approach on a real-world dataset

that are collected from a K-12 interactive mathematical question pool Learnlex. We tested

our new feature set on four typical multiple-classification machine learning models such

as Logistic Regression (LR), Gradient Boosting Decision Tree (GBDT), Support Vector

Machine (SVM) and Random Forest(RF).

Prediction Framework

We propose our prediction framework as Figure 2.11, which mainly contains three mod-

ules: data collection and preprocessing, feature extraction, and prediction and evaluation.

In the feature extraction module, we extract the historical performance statistical fea-

tures and recent performance statistical features from the records. In addition, we summa-

rize each question’s basic information (e.g., grade, difficulty) and compute mouse move-

ment trajectories to representation features including think-time, first drag-and-drop, first

attempt, and other problem-solving related features. In addition, we combine these fea-

tures and statistical features (e.g., score) and build a problem-solving HIN on them to

calculate the question similarity matrix..

In the prediction and evaluation module, we test these features on four typical machine

learning models to compare their performances with and without the mouse movement

14



Figure 2.11: The prediction framework

features. Similar to previous research (Gardner et al., 2019; ?), we compare prediction

accuracy, weighted F1 and ROC curves and feature importance score in GBDT to evaluate

and discuss our method.

Feature Table

We extract three sets of features: change points, TFF (think time, first attempt, and

first drag-and-drop) and MDSM (mouse drag statistical measurements). We use change

points, TFF and MDSM to model students’ initial and overall behaviors in a problem-

solving process, respectively.

Figure 2.12: A sample mouse movement trajectory and the scheme diagram of change
point detection algorithm. The 1st change point is both the think time end point and the
first attempt start point. The 2nd change point is the first attempt end point.

The change points are the time points where there is an abrupt change in the mouse

movement trajectory to distinguish different problem-solving stages in our context and
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Table 2.1: TFF feature table. TFF: think time, first attempt, and first drag-and-drop.

Type Feature Description

Think time

Time length
Time between opening the web
page and the first change point.

Time percent
Percentage of think time in
time length of the whole trajectory.

Event length
Mouse event number
in think time.

Event percent
Percentage of mouse event
number in the whole trajectory.

First attempt
Event end
index

Mouse event number during
the first attempt.

First drag-
and-drop

Time length
Time between opening the web
page to the first drag-and-drop.

Time percent
Percentage of first drag-and-drop
in time length of the whole trajectory.

Event start
index

Mouse event number before
first drag-and-drop starts.

Event percent
Percentage of event number
before first drag-and-drop starts
in the whole trajectory.

Event end
index

Mouse event number when first
drag-and-drop ends.

K First drag-and-drop trajectory curvature.

D First drag-and-drop trajectory length.

Delta First drag-and-drop chord length.

they could infer students’ problem-solving capabilities from the mouse movement tra-

jectories. As shown in Figure 2.12, we split the mouse movement trajectory into three

sub-parts using two change points: the think time stage, the first attempt stage (i.e., the

first action episode after the thinking period) and the following actions stage.

The detailed attributes of the TFF are shown in Table 2.1. Drag-and-drops is a series

of consecutive drag events that start with the mouse down and end with the mouse up

and thus the first drag-and-drop is the first drag with a mouse down and a mouse up.

More details can be referred in the paper (Wei et al., 2020).

As for MDSM, we define the following features to represent mouse drag statistical

measurements as Figure 2.13 shows.

• D: Drag-and-drop trajectory length.

• Delta: Drag-and-drop chord length.
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Table 2.2: Three statistical measures for six features. IQR: Interquartile range. D:
Drag-and-drop trajectory length, Delta: Drag-and-drop chord length, K: Drag-and-drop
trajectory curvature, Tdrag: Drag-and-drop duration, TIdle: Drag-and-drops interval and
tIdle: Mouse events interval.

K D Tdrag Delta tIdle TIdle

Median The feature’s median value in its value list of the whole trajectory.
IQR The feature’s IQR in its value list of the whole trajectory.
Mean The feature’s mean value in its value list of the whole trajectory.

• K: Drag-and-drop trajectory curvature (Delta/D).

• TDrag: Drag-and-drop duration.

• TIdle: Drag-and-drops interval.

• tIdle: Mouse events interval.

Figure 2.13: The example of defined features for MDSM.

Information such as score records and score distribution on questions can also reflect

a student’s ability and the question difficulty for all students. Features extracted from

such records are widely applied in prediction of students’ performance. Crossing com-

binations of features provide predictive abilities beyond what the features can provide

individually (Crosses, 2019). Thus, we apply the cross feature method, which is a syn-

thetic feature formed by multiplying (crossing) two or more features, to questions’ and

students’ basic statistics. As Table 2.3 shows, we have three parts of statistical features:

question statistics, student statistics, and the recent statistics of a student.
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Table 2.3: Other statistical features: questions statistics, student statistics and student
recent statistics. Symbol: #: Number of records, %: Proportion of records. Expression
A × B: cross features of A and B. Expression C in [ E ]: calculate C for each category or
dimension in E.

Feature Description

Question statistics

Math dimension Question’s domain knowledge (e.g, area).

Grade Student’s grade that the question suggests.

Difficulty Question’s difficulty given by experts.

#Total submissions Total number of submissions in question.

#2nd submissions Total number of second submissions in question.

%Submissions in
[score class]

Proportion of submissions in each score class.

Student statistics

#Total submissions Student’s total submissions in history.

#2nd submissions Student ’s total second submissions in history.

%Submissions in
[math dimension ×
grade × difficulty]

Student’s proportion of submissions in each
specific math dimension, grade and
difficulty.

1stAvgScore in
[math dimension ×
grade × difficulty]

Student’s first submission average score in
each specific math dimension with assigned
specific grade and difficulty.

Student recent statistics

#Submissions in
[math dimension]

Number of submissions in each math dimension
in past N days.

#Submissions in
[grade × difficulty]

Number of submissions in each grade and
difficulty in past N days.

Average score in
[math dimension]

Average score in each math dimension in past
N days.

Average score in
[grade × difficulty]

Average score in each grade and difficulty in
past N days.

Score std in
[math dimension]

Score standard deviation of each math
dimension in past N days.

Score std in
[grade × difficulty]

Score standard deviation of each grade and
difficulty in past N days.
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Figure 2.14: The framework of the proposed method. The blocks highlighted in green are
our major contributions.

2.3.2 Peer-inspired Student Performance Prediction with Graph
Neural Network

Interactive online question pools, an essential part of online learning, attempts to make

it a joyful process for students to practice their knowledge on a collection of interactive

questions. However, since interactive online question pools are different from MOOC

platforms and there is no predefined sequential order for the learning materials (i.e., ques-

tions) or accurate question knowledge labelling, former successful performance prediction

methods designed for MOOCs are not suitable to be applied on interactive online question

pools. Therefore, we are motivated by the crucial research question: how can we achieve

effective student performance prediction in interactive online question pools?

We propose a peer-inspired approach for student performance prediction in interactive

online question pools. It extensively considers the historical problem-solving records of

both a student and his/her peers (i.e., other students working on the question pool) to

better model the complex relationship among students, questions, and student perfor-

mances and further enhance student performance prediction, which is achieved by using

a GNN-based model. Figure 2.14 shows the framework of our approach, which consists

of three major modules: data processing & feature extraction, network construction, and

prediction. The module of data processing & feature extraction is designed to process

the related data and extract features of the historical data that will be further used for

network construction and student performance prediction. We considered three types of

features: statistical features of students reflecting students’ past performance, statistical

features of questions indicating the question popularity and their average scores, and

mouse movement features representing the characteristics of students’ problem-solving

behaviors. The network construction module builds a network consisting of both stu-

dents and questions, where the interactions between them are also considered and further
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integrated into the network. This network also incorporates the three types of features

to extensively model the various performance of different students on different questions.

Finally, the constructed network, along with the extracted features, is input into the pre-

diction module, where we propose R2GCN, a novel Residual Relational Graph Neural

Network model that is adapted from R-GCN (Schlichtkrull et al., 2018) by adding resid-

ual connections to hidden states, to predict a student’s score level on the unattempted

questions in interactive online question pools.

Our peer-inspired performance prediction method could provide the interactive online

question pools with a accurate prediction result and benefit lots of downstream tasks

including adaptive learning path construction, personal question recommendation and

students retention rate improvement. For more details, please refer to our paper (Li

et al., 2020).

2.4 Learning Path Planning

Online question pools like LeetCode provide hands-on exercises of skills and knowledge.

However, due to the large volume of questions and the intent of hiding the tested knowl-

edge behind them, many users find it hard to decide where to start or how to proceed based

on their goals and performance. To overcome these limitations, we present PeerLens, an

interactive visual analysis system that enables peer-inspired learning path planning. Peer-

Lens can recommend a customized, adaptable sequence of practice questions to individual

learners, based on the exercise history of other users in a similar learning scenario. We

propose a new way to model the learning path by submission types and a novel visual

design to facilitate the understanding and planning of the learning path. We conducted a

within-subject experiment to assess the efficacy and usefulness of PeerLens in comparison

with two baseline systems. Experiment results show that users are more confident in

arranging their learning path via PeerLens and find it more informative and intuitive.

2.4.1 Path Planning Engine

The learning path planning engine models the learning path, groups similar learning paths

according to four important attributes and further forms learning path suggestions.

Learning Path Modeling

We use submission type to describe how a learner solves a specific problem Pi. Fig-

ure 2.15 shows the six submission types E = {Ea, Eb, Ec, Ed, Ee, Ef} defined in this paper,

where Ea denotes one failed attempt without success, Eb denotes multiple failed attempts

without success, Ec denotes multiple failed attempts followed by one success, Ed denotes
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Figure 2.15: Submission types and their distribution: (a) the six submission types: 1
means solved, 0 otherwise; (b) submission type distributions of Easy, Medium and Hard
questions.

multiple failed attempts followed by one success and more attempts, Ee denotes one suc-

cess without further attempts, Ef denotes one success followed by more attempts.

Peer Learning Path Grouping

The grouping of peer learning paths is done in three steps. First, following prior

studies (Shephard, 1968; Burnett et al., 2007),we choose four attributes to group learning

paths of learners in question pools. They are learning duration (the time span between

the first submission event and the last submission event), learning frequency (how often a

submission event appears), learning intensity (the number of submission events per day)

and learning proficiency ((Ee + Ef )/#{submission events}). Second, we plot histogram

overviews to inspect the user distribution along each attribute. Third, domain experts

are involved to specify meaningful ranges for each attribute based on the histograms.

Two factors are considered in this process: user number within each range and behavior

differences between ranges. The grouping results are shown in Table 2.4. Combining

these attributes, we further extract three typical learning scenarios (i.e., regular learning,

intensive learning and, advanced learning), as shown in Figure 2.10(a). This grouping

can be reused if the size of the new data is relatively small to that of the existing dataset

and when the value distribution is largely unaffected. If the distribution of an attribute

has changed considerably or new scenarios are introduced, we rerun the second and third

step to update the grouping.

Path Suggestion

We achieve learning path planning based on Markov Chain (MC), as it is more intuitive

for human beings to understand. Specifically, we define the state s as a set of problems

which have been solved (Piech et al., 2015; ?), e.g., s = {X0,X1, ...,Xn}. Note that we do
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Table 2.4: The four performance-based attributes are empirically divided into four ranges.

Range 1 Range 2 Range 3 Range 4

Duration(months) 0∼1 1∼3 3∼6 >=6
Frequency 0∼0.1 0.1∼0.2 0.2∼0.3 >=0.3
Intensity 0∼1 1∼2 2∼5 >=5
Proficiency 0∼0.25 0.25∼0.5 0.5∼0.75 >=0.75

not consider the order in which the problems are solved. Based on this definition, a given

peer path [(Xi0 , Ei0 , ti0), ..., (Xin , Ein , tin)] corresponds to a state s = {Xi0 , Xi1 , ..., Xin}.
State si transits to State sj only when sj = si ∪ Xk, where Xk is the extra problem in

sj compared with si. To generate the component Pss′ in the transition matrix P , we

count the number of transitions Nss′ from s to s′ and the number of all transitions Ns

from s within the given peer paths, which are included in the peer group selected by the

learner. Then Pss′ is defined as the ratio of Nss′ to Ns. This transition probability matrix

P captures the common behaviors of problem solving in the peer group.

Based on this P , we can plan learning paths for a given learner. The most natural

path is the most popular path taken by the selected peer group. Given the learner’s

history path, we first find the corresponding state su, and then query P to find the state

transition from su with the highest possibility. This query is conducted recursively until

a path of a certain length is found. This path is then recommended to the learner as the

popular path.

We also derive two variants from the popular path to meet different learners’ needs

and characteristics. The first variant is the challenging path, which is generated by

skipping problems of similar difficulty. To this end, we use cosine similarity to measure

the similarity of submission type distributions among the consecutive problems in the

popular path and select only one problem from cosecutive and similar problems. Another

path variant is the progressive path. We reorder the problems from the popular path

based on the problem’s difficulty level from easiest to hardest, which is also inferred by

submission type distributions.

2.4.2 Visual Design

Design The interface of PeerLens is composed of three coordinated views: the peer se-

lection view (Figure 2.10(a)), the learning path view (Figure 2.10(b)), and the problem

archive view (Figure 2.10(c)).

Peer Selection View As shown in Figure 2.10(a), the peer selection view further

consists of four radar charts arranged horizontally. The left three charts indicate peer

groups in regular, intensive, and advanced learning scenarios, separately. Meanwhile, the
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rightmost chart allows learners to manually customize their learning scenarios.

Learning Path View

Figure 2.16: Learning path view. (a) History path, (b) Popular path, (c) Progressive
path, and (d) Challenging path.

The learning path view compares the learner’s learning path with those of the selected

peer group (Requirement R2), and offers diverse learning path suggestions (Requirement

R3). In this view, a zipper-like visual metaphor is proposed as part of the main design

to help learners understand the context of one’s learning path by answering “where have

I came from?”, “where am I?”, and “where do I go?”. As shown in Figure 2.10(b),

the history path on the left displays which questions have been tried by the learner

(Figure 2.10(b1)), and the future path on the right displays three learning paths suggested

by the system (Figure 2.10(b2, b3, b4)). A location marker in the middle indicates the

question currently being worked on (Figure 2.10(b5)). In all these paths, each question is

represented by a tooth on the zipper design.

The history path in Figure 2.16(a) is made up of three components: the array of

upper teeth 2.16(a-1), the array of lower teeth 2.16(a-2), and the slider 2.16(a-3). The

upper teeth represent the performance of the selected group. The lower teeth represent
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current learner’s performance on each question. Both upper and lower teeth are arranged

in chronological order. To prevent visual clutter, we make use of the slider in the middle

to control the amount of information displayed in this view. The slider is placed in the

leftmost position by default when the zipper is closed. Each tooth in the lower array

represents the submission type of the learner towards a specific question. Each tooth in

the upper array shows the major submission type of the selected group in completing

that question. In case the learner wants to see the detailed group performance, s/he

can drag the slider rightward to open the zipper. The opened part of the teeth will

then show the distribution of submission types by the stacked bar chart Figure 2.16(a-4).

The learner’s submission type is highlighted on the bar to show his/her position in the

group. Submission types are encoded using a sequential color scheme from red to green

in Figure 2.15 to indicate different submission types because we consider that different

submission types can differentiate a good performance from a bad performance. The

detailed information of the submission types can be assessed when hovering over each bar

in the array (Figure 2.16(a-5)). The problem ID, the distribution of the submission type

of each question and the learner’s submission type will be given.

The future path displays three suggested learning paths: the challenging path (Fig-

ure 2.10(b2)), the popular path (Figure 2.10(b3)), and the progressive path (Figure 2.10(b4)).

When the zipper is closed, as shown in Figure 2.16(b-1), the array of upper teeth encodes

the selected learning group’s major submission type on each question while the array

of lower teeth shows the predicted difficulty of each question for the learner. To avoid

overusing colors, we use the height of the grey bar to show the difficulty Figure 2.16(b-2).

The higher the grey bar, the more difficult the question.

We also design visual cues to reason each path, and help learners understand the

difference among the three suggested paths. On the popular path, we use the flow in-

side the path to show the probability of taking the next question in the selected group

(Figure 2.16(b-3)). The branch of the flow indicates the minor number of people going

on to do the other questions. Moreover, we use the lines to link the same question on

different paths which helps to reason the challenging path and the progressive path which

are derived from the popular path. For the progressive path (Figure 2.16(c)), learners

see the detailed distribution of problems on the progressive path showing the growing

difficulty from the easiest to the hardest, in accordance with the reordering of problems

in Figure 2.16(b), in terms of difficulty level. The problems on challenging path only link

to some of the problems on the popular path. By referring to Figure 2.16(d), learners

can find that only one problem is chosen from three concecutive problems with similar

submission distributions (difficulty).

When a learner selects a path, a location marker appears on that path, indicating
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the problem that the learner is solving. A hint is also shown above it, as depicted in

Figure 2.16(b-4). There are three types of hints: “do this problem again”, “move to the

next problem”, “change a path”, as shown in Figure 2.16(b-5). The suggested path will

be updated when the learner changes path or customizes a new learning scenario.

Problem Archive View

The problem archive view in Figure 2.10(c) is designed to allow learners to quickly map

the questions on the learning path with the original question in the pool. When hovering

over any bar on the learning path, the corresponding question will be highlighted on the

problem list. Learners can click the question on question list to enter original question

page. The previous records and hints are shown on the left-hand side of each problem.

More details can be referred in the paper (Xia et al., 2019a).

2.5 Learning Behavior Regulation

“Gaming the system” is the phenomenon where students attempt to perform well by

systematically exploiting properties of the learning system, rather than learning the ma-

terial. Frequent gaming tends to cause bad learning outcomes. Though existing studies

tackle the problem by redesigning the system workflow to change students’ behaviors

automatically, gaming students discover new ways to game. We instead propose a novel

way, reflective nudge, to reflectively influence students’ attitudes by conveying reasons not

to game via information visualizations. Particularly, we identify three common gaming

contexts and involve students and instructors in co-designing three context-specific per-

suasive visualizations. We deploy our information visualizations in a real online learning

platform. Through embedded surveys and in-person interviews, we find some evidence

that the designs can promote students’ reflection on gaming, and suggestive data that

two of them can reduce gaming compared with control groups. Furthermore, we present

insights into reflective nudge designs and practical issues concerning deployment.

2.5.1 Visualization Designs

V1 (Fig. 2.17) is designed to convey that gaming the system through frequent submissions

may result in spending a much longer time reviewing questions before an exam (G1).

There are three rows in this visualization. The first row describes how good students

spend time on this question, the second row shows how struggling students spend time

on this question, and the third row is the student’s own submission sequence. Each bar

on the row is a submission, whose colors, red and green, represent incorrect and correct

submission, respectively. Yellow blocks mean the reflection time while blue ones represent
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Figure 2.17: V1 shows how good students and struggling students spend their time on
solving the problem and reviewing before the exam in order to convey gaming the system
by submitting frequently may need to spend much more time reviewing the question
before an exam.

the reviewing time before the exam. To achieve G2, first, by comparing the second row

with the first row, we see that the yellow block is smaller between each bar while the

blue trunk is much longer, by which we want to enhance the persuasiveness on spending

more time between two submissions. Second, students can compare his/her records with

the good students and struggling students to remind themselves of reflection instead of

gaming. As shown in Fig. 2.17, this student has four recent submissions, and the time

interval between each submission is short. Therefore, he/she tends to be similar to a

struggling student, which may make it possible to persuade him/her to spend a longer

time on reflection. We try to make it intuitive by using rectangles and basic colors (G3).

Figure 2.18: V2 shows the attempt times of peers by mean attempts and first-time pass
rate from last semester in order to convey that difficult problems take considerable effort
for other students to solve and that it is unnecessary to give up quickly by resorting to
gaming the system.

V2 (Fig. 2.18) is designed to convey that difficult problems take considerable effort

for other students to solve and that it is unproductive to give up quickly by resorting to
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gaming the system (G1). According to instructors’ suggestions, we use mean attempts

and the first-time pass rate to indicate the difficulty level of this problem. Additionally,

we use “beat” how many percentages of students to make this design more persuasive.

We use the red and green bars to represent incorrect and correct submissions, respectively

(G3). To resolve the problem that no first-time pass rate exists when no one submits their

answer in the exercise, we use the data of this exercise from the last semester. E.g., in

Fig. 2.18, the historical first-time rate is only 0.16, and the number of mean attempts

is four, indicating that this problem is quite difficult. Although this student solved the

problem on the fourth attempt, he/she is better than or as good as 70% students with

more trials. In addition, if the student tries to guess the correct answer by submitting

many times, he/she will beat fewer students, which persuades him/her to think carefully

about being competitive in the class (G2).

Figure 2.19: V3 shows one example of the prerequisite relationship among learning con-
cepts in order to convey that learning concepts are connected and that the negligence of
one concept may hinder the mastery of later concepts due to the cumulative nature of the
course.

V3(Fig 2.19) is designed to convey that learning concepts are connected and that the

negligence of one concept may hinder the mastery of later concepts due to the cumulative

nature of the course (G1). Each rectangle represents a learning concept, and the arrow

from A to B means A is the prerequisite of B. We constructed the concept hierarchy

based on the prerequisites relationship labeled by the instructors for each question. The

background color of the rectangle represents how much the student has mastered the

learning concept. The green one means students’ average score on that learning concept

is high enough, indicating the student has mastered the concept, while the red one means

that the corresponding learning concept needs to be reviewed. Furthermore, the yellow

one means the current learning module, and the grey ones require an understanding of

the current learning concept. The reason we use this structure is that existing research

reported that the tree structure is easy to understand (Long et al., 2017) (G3). We

attempted to use this concept graph to show the connections between learning concepts
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and the importance of the current one. We also use red rectangles to persuade students

to review previous learning concepts for solving the current problem if they can not

solve them correctly (G2). These rectangles are clickable and can direct students to the

corresponding pages.
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CHAPTER 3

EVALUATION

3.1 Data Collection

3.1.1 Mouse Movement Data Collection

The interaction data, such as the trajectories, the drag and click actions of the mouse,

are collected and visualized as interaction heat map. It virtually shows the elements of

the lecture materials which the users pay more attention to.

Figure 3.1: Mouse movement data format

Figure 3.2: Mouse movement data format

• Many students got the correct answer (Points 1, 2 and 5).

• More students preferred to move the point horizontally than vertically (Points 1,3

vs 2,4).

• Some students did solve the problem in a ”subtractive” way.
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3.1.2 Grading Data Collection

The average score of each question could imply the questions’ difficulty levels. It helps

improve the reasonability of question assignment. For example, the difficulty level of the

bottom left questions may not be reasonable.

Figure 3.3: Mouse movement data format

The average scores in different login periods could reflect the students’ study patterns

and efficiency. A bursting number of students study on the E-learning platform around

lunch time, but their performance drops.

Figure 3.4: Mouse movement data format

Number change of login students in different login days in a week reflects the syllabus

schedule. For example, the distribution of user numbers on Thursday implies an assign-

ment deadline. Students are often more active in the afternoon (12pm-6pm) and evening

(6pm-12am)
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Figure 3.5: Mouse movement data format

3.2 Case Study of Problem-solving Sequence Analy-

sis

3.2.1 QLens

To evaluate the visual analytics system, QLens, as introduced in Section 2.2.1, we use

one case to describe how it can help question designers inspect students’ problem-solving

behaviors and check whether students’ problem-solving logic matches the question de-

signer’s design intention. The design intention referred here is reflected in the step-wise

solution provided by the question designer.

Figure 3.6: A sequence of popular answers.

The question in Fig. 2.10a1 asks students to position the six digits in a way such that

the result of its product is as large as possible. E3 thought students may first figure

out putting the largest two numbers in the hundred digits and estimated that students

may encounter difficulties when dealing with the tenth digits, which was inferred from

the post-question solution as shown in Fig. 2.6b. Then, E3 checked the Transition View

(Fig. 2.10b2) to see whether students’ practical behaviors met their design intention. He

noticed a thick line in the middle of the Sankey diagram as indicated by the orange arrow.

This thick line shows that most students got stuck at Stage two and cannot move further

to higher stages (i.e., fulfilling more conditions) even after making several steps. Further,

by checking the condition glyphs on Stage two, E3 saw that the first and fourth rectangles

have darker shade than other rectangles, which represents that these two conditions are

fulfilled by more students than other conditions. Referring to the condition description

in the top left corner of Fig. 2.10b2, E3 confirmed that the students were clear that the
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first step is to position the largest numbers (5 and 6) to the hundredths place. He further

checked the detailed information shown in the tooltip (Fig. 3.6) when hovering the cursor

on each step of Stage two. E3 found that the most popular answers given by the stu-

dents are as follows: 6, null, null, 5, null, null, 6, 4, null, 5, null, null, 6, 4, null, 5, 3, null,

6, 4, 2, 5, 3, null. It verifies that students were indeed confused in deciding the number for

tenths place. In this case, we can safely conclude that the design intention is consistent

with students’ problem-solving behaviours.

3.2.2 SeqDynamics

To evaluate the visual analytics system, SeqDynamics, as introduced in Section 2.2.2, we

describe one usage scenario, elite selection and analysis. Oliver, the coach for a competitive

programming team who wanted to enlist three highly skilled individuals into his team’s

training camp from a pool of 1000 applicants. In the past, Oliver selected people by

holding an examination. Nonetheless, he worries that individuals who perform poorly

in the examination may still have great potential. Thus, he decides to use SeqDynamics

to better examine individual students by evaluating their problem-solving history on the

online judge.

0. 0

2
3

6
9

17

1

(a) (b)
Customized Rank

ELO Rank

Figure 3.7: Enlarged subgraphs of Fig. 2.10. (a) Correlation Panel. (b) Enlarged section
of the projection view in Fig. 2.10b.

Oliver first loaded all 1000 applicants into the system and found the ranking distribu-

tion sorted by their relative ELO scores (Fig. 2.10a). He then narrowed down to the top

20 applicants, since the other candidates had relatively lower scores, and then checked the

Correlation Panel to see which attributes were positively correlated to the ELO ranking.

He discovered that the accept, the submissions, and the variety had larger portions of
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the inner squares (Fig. 3.7a). By equally distributing the weights of the three features to

one third each, the new customized ranking was generated, based on which he selected

candidates with high potential. He then inspected the Projection View (Fig. 2.10b) for

more detailed information and enlarged the top right-hand corner to get Fig. 3.7b, to see

the students who topped both the ELO ranking and his customized ranking.

Oliver noticed the upmost three candidates, 1, 2, and 3, who were the top scorers

calculated by ELO ranking and the rightmost three candidates, 6, 9, 17, who ranked top

in the customized ranking.

From the first glance at the six candidate glyphs (Fig. 3.7b), 9 was much bigger (both

inner and outer circle) than the others, indicating 9 had tried and solved more questions.

Therefore 9 was selected. Then Oliver discovered 3 was more brightly colored and there

was a relatively smaller yellow sector, implying that 3 had attempted less problem types

and overall simpler questions compared to the rest of the candidates, and therefore could

be eliminated.

Unfinished

Figure 3.8: The bilateral stacked graphs of learners ranked 1, 2, 6.

Afterwards, Oliver inserted 1, 2, 6, 17 into the Evolution View (Fig. 3.8) to facilitate

greater in-depth understanding and comparison. This view specifically allowed him to

vividly visualize each candidate’s progressive performance and behaviors. He found that

1, 2, 6 were fast learners and performed outstandingly within a short span. However,

among them, 6 had an excessive amount of unfinished questions and was thus eliminated.

By inspecting the downstream of the bilateral stacked graphs of 1 and 2, he found that

2 had no red branch while 1 had a distinct red branch, implying that 2 solved problems

with a comparatively higher passing rate. Thus, Oliver selected 2 into the team.
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With 2 and 9 chosen, Oliver needed to compare 1 and 17 to determine the allocation of

the final position in his team of 3. Through the Comparison View of 1 and 17 (Fig. 3.9a),

1 tried more types of problems than 17.

(a)

(b)

(c)
Days

Figure 3.9: Comparison of 1vs17.

Also, he discovered that 17 started to attempt difficult problems 28 days later than

1 when aligning by start time as seen by the dot near the bottom of Fig. ??c. He then

concluded that 17 was less unwilling to step out of his comfort zone and hence selected 1

as the final candidate to enlist. Overall, Oliver successfully selected three candidates, 1,

2, 9, through comprehensive user-driven evaluations.

3.3 Quantitative Evaluation of Student Performance

Prediction

3.3.1 Predicting Student Performance in Interactive Online Ques-
tion Pools Using Mouse Interaction Features

To evaluate the method proposed in Section 2.3.1, predicting student performance in in-

teractive online question pools using mouse interaction features. We setup an experiment

and compare how these features improve the prediction performance under four different

traditional machine learning methods.

Experiment Setup

To make a 4-class classification, we applied four classical multi-class classification machine

learning models, i.e., GBDT, RF, SVM, and LR, on our datasets. The features listed in

Table 2.3 served as features in baseline method. Our experiment was conducted on the

two datasets introduced in Table 3.1.
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Table 3.1: AUC and ABROCA value in two datasets. ADD: area dimension question
dataset. DGDD: deductive geometry dimension question dataset. Ours: our proposed
method. ABROCA: Area between baseline curve and Ours curve.

Dataset Method GBDT RF SVM LR

ADD
Ours 0.88 0.87 0.85 0.87

baseline 0.79 0.85 0.77 0.83

ABROCA 0.09 0.02 0.08 0.04

DGDD
Ours 0.94 0.90 0.91 0.91

baseline 0.88 0.88 0.89 0.89

ABROCA 0.06 0.02 0.02 0.02

Based on the proposed mouse movement features, similarity matrix Msim of each

dataset was extracted and then for each first submission qx−si in the dataset, we searched

Msim to find question qy that was most similar to qx and was solved by the same student

sm. If there was no similar question with qx done by si, this submission record would be

discarded. Finally, the feature vector of qx − si in our proposed method was composed

of qx’s and si’s historical statistical features, si’s recent performance feature in Table 2.3,

qy’s mouse movement features including features in Table 2.1 and Table 2.2, qy’s score

class and the similarity score between qx and qy.

Because the dataset of proposed method for training and testing is not of the same

size as the original dataset, we used the same submission records in the baseline and the

proposed methods. In addition, to reduce the effect of imbalanced class distribution, we

applied SMOTE over-sampling algorithm to increase the size of minority classes in the

training set (Chawla et al., 2002). As for hyperparameter tuning in the four algorithms,

grid-search was conducted in model training on our datasets (Manrique et al., 2019). The

following parameters have been tested with the best values in bold:

• Number of trees for GBDT and RF: 50, 100, 150, 200, 250, 300, 350

• Max depth of trees for GBDT and RF: 5, 10, 15, 20, 25

• Learning rate of GBDT: 1e-4, 1e-3, 1e-2, 5e-2, 0.1, 0.2

• Penalty parameter of SVM (C): 0.1, 1, 5, 10

After fixing our hyperparameters, each model performed the task of predicting stu-

dents’ performance on two datasets using the baseline method and our proposed method

for 10 times each and the average accuracy scores and weighted F1 scores are in Table

3.2.
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Table 3.2: Results of the accuracy and weighted F1 over four typical machine learning
algorithms (GBDT, RF, SVM, and LR) on the proposed method and the baseline method.
ADD: area dimension question dataset. DGDD: deductive geometry dimension question
dataset. Ours: our proposed method.

Dataset Method
GBDT RF SVM LR

Accuracy Weighted F1 Accuracy Weighted F1 Accuracy Weighted F1 Accuracy Weighted F1

ADD
Baseline 0.555 0.555 0.669 0.659 0.430 0.492 0.650 0.670

Ours 0.753 0.749 0.690 0.667 0.650 0.677 0.649 0.659

DGDD
Baseline 0.600 0.597 0.664 0.663 0.600 0.611 0.720 0.731

Ours 0.833 0.805 0.780 0.767 0.633 0.643 0.733 0.744

Performance Comparison

The results for our dataset ADD and DGDD are in Table 3.2. From the perspectives of

accuracy and weighted F1 scores, we can see that in both two datasets, GBDT, RF, and

SVM performed better in our proposed method than in the baseline.

Figure 3.10: ROC-AUC curve of two methods on ADD (Area dimension question
dataset).Gray borders represent mean+std or mean-std. Area between the two curves
is ABROCA.

Besides the overall accuracy, we further evaluate the results based on the Receiver Op-

erating Characteristic (ROC) curve. The ROC curve is a graph showing the performance

of a classification model at all classification thresholds.

The ROC curve is a plot of the false positive rate and true positive rate. The area under

the ROC curve (AUC) measures the entire two-dimensional area underneath the entire

ROC curve from (0, 0) to (1, 1) (Curve & AUC, 2018; Gardner et al., 2019), which means

AUC ranges from 0 to 1. AUC provides an aggregate measure of performance across all
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possible classification, so we use the area between the proposed method’s ROC curve and

the baseline ROC curve to further compare the performance of our proposed method with

baseline’s, which is called ABROCA in prior work (Gardner et al., 2019). To eliminate

the randomness of the algorithms, we ran the program 10 times and made a mean + std

and mean − std ROC-AUC graph (Figure 3.10). As Table 3.1 shows, the ABROCA

value is always positive, this confirms that the aggregate performance of our proposed

method is consistently better than the baseline across different models. Furthermore,

we extended the student score prediction from a binary classification problem (correct

or wrong) to a multiple classification problem (0-3). To further evaluate our method’s

performance in every score class, we selected ADD (area dimension question dataset) and

drew a real-predicted heatmap (Figure 3.10) for each algorithm.

Figure 3.11: Predicted distribution heatmap of each score class with four algorithms on
dataset ADD. The proportion of True Positive samples in each score class is in red box.
In (a)-(d), the heatmap on the left shows the result of our proposed method and the right
one shows the baseline method. ADD: area dimension question dataset.

Specially, the GBDT model provides an importance score for each feature, which is

computed by the normalized summation of reduction in loss function of each feature and

called Gini importance(Pedregosa et al., 2011). The importance score of each feature

ranges from 0 to 1 and a larger importance score indicates that the corresponding feature

is more important in training the model. This directly help to learn the importance

distribution of our feature sets. In our method, the importance score of mouse movement

feature set, most similar question’s score class and the similarity score (39 features) reaches
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27.4% among 483 features, which indicates the mouse movement feature set has significant

contribution in GBDT model.

3.3.2 Peer-inspired Student Performance Prediction with Graph
Neural Network

To evaluate the method proposed in Section 2.3.2, predicting student performance using

graph neural network. We setup an experiment and compare the prediction performance

with four baselines.

Experiment Results

We conducted experiments to evaluate the prediction accuracy and weighted F1 score of

students’ performance on each question and there are 4 question score levels. We compared

the proposed approach with 5 baseline approaches including 3 classical machine learning

models without peers’ mouse movement features. Our baselines used are Relational Graph

Convolutional Networks (R-GCN), Gradient Boosting Decision Tree (GBDT), Supporting

Vector Machine (SVM) and Logistic Regression (LR). E2N denotes Edge2Node technique

mentioned in 2.3.2.

Evaluation Metrics We use three different metrics to evaluate models comprehen-

sively. Here we use s, ns
c, n

s, W -F1s to denote a student, the number of correctly pre-

dicted questions for a student, the number of questions in the test set, and the weighted

F1 of the prediction results.

Average personal accuracy (AP-Acc) evaluates a model’s average prediction

accuracy on different students:

AP -Acc = 1
N
×

∑N
s=1

ns
c

ns . (3.1)

Overall accuracy (O-Acc) evaluates a model’s average prediction accuracy on all

predicted questions:

O-Acc =
∑N

s=1 n
s
c/

∑N
i=1 n

s. (3.2)

Average personal weighted F1 (APW-F1) evaluates a model’s average weighted

F1 score on different students:

APW -F1 = 1
N
×

∑N
s=1W -F1s. (3.3)
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Short-term Dataset The short-term dataset contains 43,274 mouse trajectories made

by 3,008 students on 1,611 questions. Taking into account that too few labeled data will

make it difficult to train the GNN models, we only conducted experiments for 47 students

who have finished at least 70 questions. The experiment results are shown in 3.3.

Table 3.3: The comparison between our method R2GCN and the baseline models on
short-term dataset.

Model AP-Acc O-Acc APW-F1

R2GCN 0.6642 0.6662 0.6148

R-GCN (with E2N) 0.6302 0.6331 0.5737

R-GCN (without E2N) 0.6151 0.6198 0.5508

GBDT 0.5687 0.5750 0.4398

SVM 0.5734 0.5805 0.4470

LR 0.5928 0.5961 0.5414

Long-term Dataset The long-term dataset contains 104,113 mouse trajectories made

by 4,020 students on 1,617 questions. Taking into account that too few labeled data

will make it difficult to train the GNN models, we only conducted experiments for 1,235

students who have finished at least 20 questions. The experiment results are shown in 3.3.

Table 3.4: The comparison between our method R2GCN and baseline models on long-term
dataset.

Model AP-Acc O-Acc APW-F1

R2GCN 0.5507 0.5671 0.5050

R-GCN (with E2N) 0.5100 0.5313 0.4605

R-GCN (without E2N) 0.5119 0.5296 0.4535

GBDT 0.4836 0.4610 0.3686

SVM 0.4973 0.4718 0.3801

LR 0.4881 0.4904 0.4322

Expert Interview

We have been working closely with our industry collaborator Trumptech for about one

year on this research project. When finishing the proposed peer-inspired student per-

formance prediction approach, we interviewed 5 online question designers and course

instructors from Trumptech and they showed great interests in our approach and a senior

online question designer commented “the prediction accuracy is impressive compared with

other state-of-the-art approaches. We’d like to deploy it on our platforms to facilitate

other tasks, e.g., an adaptive question recommendation system”. Another senior system

engineer commented “The proposed method can fulfill our requirement for evaluating stu-

dents’ proficiency and will benefit our downstream tasks like adaptive recommendation”
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The experts from Trumptech also suggested that it will be interesting to extend the pro-

posed approach to work for online learning platforms designed for touch screen devices,

as they are becoming increasingly popular for online learning.

3.4 Learning Path Planning

3.4.1 User Studies of PeerLens

To evaluate how our system, PeerLens, assist students in planning their learning paths

as introduced in Section 2.4, we conducted user studies with 18 participants and com-

parted with two baselines interms of informativeness, decision making, visual design, and

usability.

Experiment Design

According to Weibelzahl’s work (Weibelzahl, 2001), we adopted a four-layer taxonomy

to evaluate our system. In particular, we conducted an user study to systematically

assess the informativeness of the knowledge delivered, the effectiveness in facilitating the

decision making, the usability of the proposed system, as well as the visual design.

Participants: We recruited 18 students (7 females, 11 males, age:24±2.85) from a

local computer science department to conduct the user study. Each participant received

a gift of $25 for their time after the study. All the participants have a basic knowledge of

the online judge and question pool, and 9 out of 18 have had long experience using at least

one of these online judge systems, e.g., LeetCode, TopCoder. We chose the participants

with a computer science background as most of the popular online judges and question

pools, as well as this study, are on a programming test topic, for which they could provide

us more comprehensible insights.

Experiment setting and procedure: We compared PeerLens (namely the full

PeerLens) with two alternative learning systems. One is the original online judge without

an explicit design for the learning path planning (namely the baseline system). Questions

in the baseline system are sorted by their problem IDs assigned upon creation, which is

independent of contents and question difficulties; in a sense, the “recommendation” of the

next question is almost random. The other one is a simplified version of PeerLens (namely

the primitive PeerLens). The primitive system uses a truncated design of PeerLens with

the same recommendation algorithm Figure ??(b). The differences between the primitive

and full version lie in: (1) the full version provides multiple learning paths for learners to

select by themselves and the primitive version only provides one suggested learning path.

(2) the full version makes use of several visual cues and hints to illustrate the semantics
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and statistics of suggested paths while no such cues are applied in the primitive version to

interpret the learning path. According to (Sánchez-Ruiz et al., 2017), we designed three

learning scenarios in this study: the basic programming practice, the coding qualification

test for IT company interviews, and the International Collegiate Programming Contest

preparation.To minimize the ordering and learning effect, we counterbalance the three

systems in comparison with the three learning scenarios.

The actual experiment is composed of four sessions. In the first session, participants

are briefed about the purpose and procedure of the experiment. Each following session

lasts approximately 20 minutes and one of the three systems is presented and tested in

one different learning scenarios.Each participant is required to conduct two tasks with

the provided system. The first task is to determine the starting question under a specific

learning scenario; The second task is to find the next question to solve given an existing

historical learning path under the same learning scenario. Participants are asked to think

aloud about their strategies to pick questions. After finishing all the tasks with a particular

system, the participant is required to complete a questionnaire with 7-point Likert scale

questions derived from the existing literature (Du et al., 2017; ?, ?), which is shown in

Table 3.5.

Table 3.5: Our questionnaire focuses on 4 aspects: informativeness (Q1−Q3), decision
making (Q4−Q6), visual design (Q7−Q8) and usability (Q10−Q12).

Q1
The information needed to plan a learning path is
easy to access.

Q2 The information needed to plan a learning path is rich.
Q3 The information is sufficient to plan a learning path.

Q4
The system was helpful for me to find a proper
learning path for a specific learning scenario.

Q5
I am confident that I find a suitable learning path
for the learning scenario.

Q6
The system helps make adjustment according to
previous performance.

Q7 The learning path design is intuitive.

Q8
The learning path design helps me understand the
suggested path.

Q9 It was easy to learn the system.
Q10 It was easy to use the system.
Q11 I would like to recommend this system to others.

Results and Analysis

In summary, the results on informativeness and decision-making efficacy demonstrate that

the proposed visual designs in PeerLens are informative as they provide accessible, rich,
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Table 3.6: Repeated measures ANOVA of Baseline, Primitive, Full on informativeness,
decision-making, Primitive and Full on visual designs and system usability.

df F Sig. η2

Informativeness
accessibility 1 119.05 0.00 0.875
richness 1 43.59 0.00 0.719
sufficiency 1 153.86 0.00 0.364

Decision-making
confidence 1 79.12 0.00 0.823
guidence 1 327.71 0.00 0.951
adjustment 1 84.24 0.00 0.832

Visual design
intuitiveness 1 6.25 0.23 0.27
comprehension 1 8.01 0.12 0.32

System usability
easy to learn 1 0.57 0.46 0.03
easy to use 1 0.60 0.45 0.03
recommendable 1 11.12 0.00 0.40

and sufficient information to learners. The submission distribution of the problem offers

a clear visual cue of the difficulty of problems. In addition, the full-version PeerLens fa-

cilitates the decision-making process by providing more options, which allows the learners

to make more adjustments, and offers more guidance to the learners. For example, the

comparison of the learner’s performance with the peer group’s performance help learners

choose which path to follow. The visual hints, such as reminding learners to try again,

helped them to decide whether to move on. Hence, learners tended to be more confident

when planning a path for their own studies. Overall, the proposed full-version PeerLens

system is more intuitive and comprehensible for learner to learn and use, and is thus

worth recommendation.

3.5 Learning Behavior Regulation

3.5.1 User Studies of Intervention

To evaluate the effect of information visualizations in promoting students’ reflect on

“Gaming the system” behavior as proposed in Section 2.5, we deployed our interventions

(reflective nudges) on the research platform we designed for. This serves as a technology

probe for understanding users’ needs and experiences in a real-world setting to inform

the proper design of technologies. We analyzed data from students’ submission records,

online questionnaires, and in-depth interviews to gain insights into the effectiveness of

our approach on gaming reduction, information conveyance, reflection promotion, and

visualization understanding.

42



3.5.2 Experiment Design

This part describes the deployment setting, online questionnaires, and the procedure of

post-study interviews.

Deployment Setting We launched our reflective nudges on the previously mentioned

online programming homework platform, which has been used by a university-level intro-

ductory programming course with 205 students from various departments. Since gaming

behavior is affected by many contextual factors such as time (beginning of the semester,

midterm period, etc.) and problem attributes (topic, difficult level, etc.) (Paquette et al.,

2018), we selected problems from the last module of the course to ensure the relative

consistency of these factors (time and topics). Also, it might be easier for us to observe

the effect as a certain number of students are likely to game the system due to the time

pressure in that period.

In particular, the last course module has four multiple-choice questions (P1-P4), and

students have to finish them within two weeks. We applied our interventions to the last

two questions and used the students’ submission behavior on the first two questions to

describe their gaming patterns before adding our interventions. We divided the students

into four groups evenly (44) by randomizing their ids (three experimental groups, each

receiving one of the three visualizations during the problem-solving process, and one

control group without visualization intervention), but each group had some students who

did not log in the system to do the exercises and thus the final numbers were uneven (39

students in the control group; 37, 44, and 38 students in V1, V2, V3 group, respectively).

Questionnaire Upon finishing all the questions, participants in the non-control

groups were invited to fill out a post-study online questionnaire (optional) derived from

a previous study (Xia et al., 2019a) and the requirements by the instructors that we were

not supposed to disturb the process with a long and open-ended questionnaire. These

questions, listed below, are to measure the efficacy of the proposed gaming interventions

in terms of information conveyance (Q1), reflection promotion (Q2 and Q3), and visual-

ization understanding (Q4) on a 7-point Likert scale (from ”1. Strongly disagree” to ”7.

Strongly agree”). Note that Q1 has three versions (Q1-1, Q1-2, and Q1-3) corresponding

to three types of reflective nudges, respectively. Q1-1 This visualization clearly shows

that ‘gaming the system may cause a longer time to review before the exam to ensure

the final performance’. Q1-2 This visualization clearly shows ‘peers also spend consid-

erable efforts on the difficult problems and gaming the system may cost more attempts

than peers’. Q1-3 This visualization clearly shows ‘a learning concept is related to other

learning concepts, so gaming the system on the questions may impair the performance

on the others’. Q2 This visualization helps you reflect on your perception of “gaming

the system” behavior. Q3 This visualization helps you reflect on your question-answering
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behavior. Q4 It is easy to understand this visualization.

In-depth Interviews Since four questions with 7-point scales may not gather all

information, we conducted post-study interviews with students who had received the

interventions to gather reasons behind their questionnaire ratings and suggestions on

these intervention designs. Altogether, we interviewed eight students (S1-S8, six males,

age: 24 ± 3.48, with backgrounds in computer science, political science, psychology, and

economics), whom we recruited on-site after office hours and sent recruitment emails to

the course mailing list. As nearly no new insight emerged after the sixth interviewee, we

did not conduct further recruitment. We asked about which interventions they received

and their ratings again since we could not cross-check their anonymous survey results.

Four of them received V2, two V1, and two V3. All procedures were approved by the

local university’s Institutional Review Board. Each interview lasted about 60 mins and

students were compensated with $8.

The interview proceeded as follows. (1) We collected the participant’s consent by

signing the consent form. (2) We provided a 5-min introduction of the project and then

collected their responses to general questions such as “did you finish the last two questions

in week 12?”, “which visualization did you receive?”. We also showed the platform to

help interviewees to recall their experiences with the visualization designs. (3) We went

over all the three designs with each interviewee and asked Q1 - Q4 for the elaboration on

their ratings. For example, if a participant gives a rating 5 (Somewhat Agree) in Q2, we

would ask them which part(s) of the visualization helped on their reflection on gaming

behavior and how. In addition, we added a fifth question to gain insights into room for

improvement: Q5 How can it be improved to help you promote your reflection on your

“gaming the system” behavior?

3.5.3 Results and Analysis

Table 3.7: Gaming proportions change over time on four problems, among three exper-
imental groups (V1, V2, and V3) and two Baselines (control group and last-semester
group). The number of student in each group is shown in the parentheses. The last row
is the first-time pass rate of these four problems in this semester to indicate the difficulty
levels.

P1 P2 P3 P4
V1-time spending(37) 0.30 0.65 0.11 0.08
V2-attempt number(44) 0.34 0.63 0.16 0.07
V3-prerequisite graph(38) 0.37 0.63 0.21 0.16
Baseline1-control group(39) 0.26 0.59 0.21 0.23
Baseline2-last semester(138) 0.32 0.65 0.21 0.16

First-time pass rate 0.26 0.09 0.71 0.56
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Table 3.8: Means and standard deviations (in parentheses) for ratings of agreement (1-
strongly disagree, 4-neither agree nor disagree, 7-strongly agree) on questions: Q1. infor-
mation conveyance, Q2. reflection on gaming, Q3. reflection on question-answering, and
Q4. easy to understand by conditions (V1, V2, and V3).

Q1-Information
conveyance

Q2-Reflection
on gaming

Q3-Reflection
on question-
answering

Q4-Easy
to understand

V1 4.6(1.7) 4.3(1.8) 4.3(1.8) 3.7(1.9)

V2 5.2(1.5) 4.7(1.2) 4.4(1.3) 5.1(1.2)

V3 5.8(0.7) 5.0(1.2) 5.3(1.1) 4.7(1.8)

We have some suggestive data that V1 and V2 may have better gaming reduction

effects compared with the control groups on the two problems we deployed. The online

rating and in-person interviews show that all three visualizations (V1, V2, and V3) convey

reasons not to game to a certain extent. They all encourage students to review the

ramifications of gaming behavior to some degree. In particular, V1 and V2 promote

reflecting more on gaming itself, whereas V3 seems to lead students to think more about

their question-answering behavior. V2 and V3 are easier to understand than V1.
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CHAPTER 4

RELEASE

4.1 GitHub

Some of the above work’s code repositories have been open-source and could be acquired

easily. Their links are as follows:

Data Collection Technique: https://github.com/huanhuanBOY/mousetrack

SeqDynamics: https://github.com/xiameng552180/SeqDynamics V0.git

The data of this system cannot be public because of the privacy limits. If want to

explore the system, please contact us.

Because the materials of the other work are regulated by NDA(Non Disclosure Agree-

ment), they cannot be released to public .

4.2 Project Page

We create a web page for this E-Learning project. In the website, we summarize the

content of the project(including all two phases) and introduce the manpower in this

project. All of our publications and achievements related to the project also be listed. If

interested, the link is http://vis.cse.ust.hk/groups/e-learning/.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Online learning has become popular in the past decades, and an increasing number of

online platforms have emerged and provided all kinds of learning materials. For example,

various MOOC platforms (e.g., Khan Academy), online question pools (e.g., LeetCode,

LearnLex), and intelligent tutoring systems (e.g., SimStudent) offer interactive maths

questions and/or programming exercises (Xia et al., 2019a). Among them, online question

pools, as an important complement to the MOOC courses, provide students with many

online exercises for practicing their knowledge. However, it remains unclear about how

to further improve students’ learning effectiveness in online learning question pools. In

this white paper, we introduced our research outputs to enhance students’ online learning

experience when working on online question pools. In Chapter 1, we introduced how

we collect the students’ fine-grained mouse movement data during the problem-solving

processes, which is generalizable to different online learning question pools. In Chapter

2, we presented our methods on analyzing students’ problem-solving behaviors within

multi-step questions and their behaviors in solving solving a series of problems, which can

help question designers and instructors quickly gain deep insight into students’ problem-

solving processes. In Chapter 3, we extracted semantic features from the mouse movement

data and predicted students’ problem-solving performance, which can help the learning

platforms estimate the question difficulty level for different students and further provide

students with personalized learning. In chapter 4, we proposed new ways for students to

customize their learning scenarios and recommended diversified learning paths for them to

choose from. In Chapter 5, we designed reflective information visualizations to encourage

students to reflect on their problem-solving behaviors and avoid gaming the system.

Besides the above work we have done, we believe there are still many interesting

research problems worth further exploration. Here are several directions that we plan to

explore in the future:

Automated Difficulty Identification and On-the-fly Guidance for Students.

We have developed the visual analytics system, QLens, to help question designers under-

stand students’ difficulties and guide the question design. However, such student difficulty

identification is mainly based on manual checking by instructors and question designers.

It remains unclear how to automatically detect the difficulties students face and provide

them with on-the-fly guidance to students further. For example, if some appropriate hints
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can be appropriately supplied to students getting stuck in a question, it can significantly

improve students’ learning experience in online learning platforms. How to handle these

issues is worth further investigation.

Multi-modal Analysis of Student Learning Behaviors. In Chapter 2.1, we pro-

posed a general way to collect students’ mouse movement interaction data during their

problem-solving process. These mouse movement data and other problem-solving records

are used in all our subsequent research on data analytics and visualization approaches

for enhancing online learning. Such kind of information provides us with an understand-

ing of students’ problem-solving processes to some extent. However, it is not able to

provide us with a comprehensive understanding of students’ problem-solving processes.

A multi-modal analysis of student learning behaviors that involve different dimensions

(e.g., student facial emotions and eye movement) can enable a comprehensive and more

in-depth understanding of student learning behaviors in online learning platforms. With

such kind of multi-modal analysis, we will be able to analyze student learning behaviors

and states (e.g., cheating and learning engagement level), which, otherwise, is difficult to

be achieved in online learning platforms.

Personalized Question Recommendation. Our research on student performance

prediction (Wei et al., 2020; Li et al., 2020) shows that we can incorporate students’ mouse

movement data to predict students’ performance in solving questions. The prediction

accuracy is also much better than prior methods. One of the major downstream tasks that

can benefit student performance prediction is personalized question recommendation, i.e.,

recommending appropriate questions to students to work on next. However, considering

these predicted student performances on each question and further recommend proper

questions is still not clear. Specifically, what is an “appropriate” question for different

students to work on next? What kind of knowledge should be tested in the subsequent

questions? If multiple questions are available, which one should be recommended for

different students? There are many such kinds of questions that need further investigation.
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